Limitation in Fabricating PSf/ZIF-8 Hollow Fiber Membrane for CO2/CH4 Separation

Nik Abdul Hadi Md Nordin, Ahmad Fauzi Ismail, Surya Murali Racha, Ng Be Cheer, Muhammad Roil Bilad, Zulfan Adi Putra, Mohd Dzul Hakim Wirzal


Hollow fiber membrane configuration is way forward in membrane development since it possesses higher packing density and effective surface area per unit module compared to other configuration. Since majority of mixed matrix membrane (MMM) for gas separation reported focuses on flat sheet membrane development, this report aims to address the challenges faced in fabricating hollow fiber MMM. In this study, hollow fiber formulation is fabricated and their MMM using different types of fillers (virgin and modified ZIF-8) are prepared and used as a dispersed phase. The neat hollow fiber membrane shows good results with CO2 permeance of 104.39 GPU and CO2/CH4 selectivity of 29.28, in comparison with reported literature. Upon filler incorporation, the resulted MMMs appear to be diminished in both CO2 permeance and CO2/CH4 selectivity. While using modified ZIF-8, lesser deterioration was shown compared to pure ZIF-8, this phenomenon is likely to occur due to the changes in solution stability which causes notable changes in membrane morphology and performances.


Hollow fiber membrane; Mixed Matrix Membrane; Metal-organic framework; Zeolitic imidazole framework 8; Modified ZIF-8

Full Text:



Bae, Y.-S., Farha, O. K., Hupp, J. T., & Snurr, R. Q. (2009). Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification. Journal of Materials Chemistry, 19(15), 2131. doi:10.1039/b900390h

Baker, R. W. (2012). Gas Separation Membrane Technology and Applications: Wiley.

Baker, R. W., & Low, B. T. (2014). Gas Separation Membrane Materials: A Perspective. Macromolecules, 47(20), 6999-7013. doi:10.1021/ma501488s

Bhardwaj, V., Macintosh, A., Sharpe, I. D., Gordeyev, S. A., & Shilton, S. J. (2003). Polysulfone Hollow Fiber Gas Separation Membranes Filled with Submicron Particles. Annals of the New York Academy of Sciences, 984(1), 318-328. doi:10.1111/j.1749-6632.2003.tb06009.x

Gordeyev, S. A., Lees, G. B., Dunkin, I. R., & Shilton, S. J. (2001). Super-selective polysulfone hollow fiber membranes for gas separation: rheological assessment of the spinning solution. Polymer, 42(9), 4347-4352. doi:

Ismail, A. F., Dunkin, I. R., Gallivan, S. L., & Shilton, S. J. (1999). Production of super selective polysulfone hollow fiber membranes for gas separation. Polymer, 40(23), 6499-6506. doi:

Ismail, A. F., & Lai, P. Y. (2003). Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation. Separation and Purification Technology, 33(2), 127-143. doi:10.1016/s1383-5866(02)00201-0

Ismail, N. M., Ismail, A. F., Mustafa, A., Zulhairun, A. K., & Nordin, N. A. H. M. (2016). Enhanced carbon dioxide separation by polyethersulfone (PES) mixed matrix membranes deposited with clay Journal of Polymer Engineering (Vol. 36, pp. 65).

Jusoh, N., Yeong, Y. F., Lau, K. K., & M. Shariff, A. (2017). Enhanced gas separation performance using mixed matrix membranes containing zeolite T and 6FDA-durene polyimide. Journal of Membrane Science, 525, 175-186. doi:

Loeb, S. (1981). The Loeb-Sourirajan Membrane: How It Came About Synthetic Membranes: (Vol. 153, pp. 1-9): AMERICAN CHEMICAL SOCIETY.

Magueijo, V. M., Anderson, L. G., Fletcher, A. J., & Shilton, S. J. (2013). Polysulfone mixed matrix gas separation hollow fibre membranes filled with polymer and carbon xerogels. Chemical Engineering Science, 92, 13-20. doi:10.1016/j.ces.2013.01.043

Mahajan, R., & Koros, W. J. (2000). Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials. Industrial & Engineering Chemistry Research, 39(8), 2692-2696. doi:10.1021/ie990799r

Md Nordin, N. A. H., Ismail, A. F., Mustafa, A., Murali, R. S., & Matsuura, T. (2015). Utilizing low ZIF-8 loading for an asymmetric PSf/ZIF-8 mixed matrix membrane for CO2/CH4 separation. RSC Advances, 5(38), 30206-30215. doi:10.1039/c5ra00567a

Md Nordin, N. A. H., Racha, S. M., Matsuura, T., Misdan, N., Abdullah Sani, N. A., Ismail, A. F., & Mustafa, A. (2015). Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: synthesis and preparation. RSC Advances, 5(54), 43110-43120. doi:10.1039/c5ra02230d

Nordin, N. A. H. M., Ismail, A. F., Misdan, N., & Nazri, N. A. M. (2017). Modified ZIF-8 mixed matrix membrane for CO2/CH4 separation. AIP Conference Proceedings, 1891(1), 020091. doi:10.1063/1.5005424

Nordin, N. A. H. M., Ismail, A. F., Mustafa, A., Goh, P. S., Rana, D., & Matsuura, T. (2014). Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concentrations of triethylamine. RSC Advances, 4(63), 33292-33300. doi:10.1039/C4RA03593C

Nordin, N. A. H. M., Ismail, A. F., & Yahya, N. (2017). Zeolitic imidazole framework 8 decorated graphene oxide (ZIF-8/GO) mixed matrix membrane (MMM) for CO2/CH4 separation. Jurnal Teknologi, 79(1-2), 59-63. Retrieved from

Ordoñez, M. J. C., Balkus, K. J., Ferraris, J. P., & Musselman, I. H. (2010). Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. Journal of Membrane Science, 361(1), 28-37. doi:

Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., . . . Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A, 103(27), 10186-10191. doi:10.1073/pnas.0602439103

Perez, E. V., Balkus, K. J., Ferraris, J. P., & Musselman, I. H. (2009). Mixed-matrix membranes containing MOF-5 for gas separations. Journal of Membrane Science, 328(1-2), 165-173. doi:10.1016/j.memsci.2008.12.006

Pourafshari Chenar, M., Rajabi, H., Pakizeh, M., Sadeghi, M., & Bolverdi, A. (2013). Effect of solvent type on the morphology and gas permeation properties of polysulfone–silica nanocomposite membranes. Journal of Polymer Research, 20(8), 1-9. doi:10.1007/s10965-013-0216-3

Rafizah, W. A. W., & Ismail, A. F. (2008). Effect of carbon molecular sieve sizing with poly(vinyl pyrrolidone) K-15 on carbon molecular sieve–polysulfone mixed matrix membrane. Journal of Membrane Science, 307(1), 53-61. doi:

Schlichte, K., Kratzke, T., & Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1-2), 81-88. doi:10.1016/j.micromeso.2003.12.027

Schröder, F., Esken, D., Cokoja, M., van den Berg, M. W. E., Lebedev, O. I., Van Tendeloo, G., . . . Fischer, R. A. (2008). Ruthenium Nanoparticles inside Porous [Zn4O(bdc)3] by Hydrogenolysis of Adsorbed [Ru(cod)(cot)]: A Solid-State Reference System for Surfactant-Stabilized Ruthenium Colloids. J Am Chem Soc, 130(19), 6119-6130. doi:10.1021/ja078231u

Surya Murali, R., Praveen Kumar, K., Ismail, A. F., & Sridhar, S. (2014). Nanosilica and H-Mordenite incorporated Poly(ether-block-amide)-1657 membranes for gaseous separations. Microporous and Mesoporous Materials, 197, 291-298. doi:

Wahab, M. F. A., Ismail, A. F., & Shilton, S. J. (2012). Studies on gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix membranes using nanosized fumed silica as fillers. Separation and Purification Technology, 86, 41-48. doi:10.1016/j.seppur.2011.10.018

Zhang, Z., Xian, S., Xi, H., Wang, H., & Li, Z. (2011). Improvement of CO2 adsorption on ZIF-8 crystals modified by enhancing basicity of surface. Chemical Engineering Science, 66(20), 4878-4888. doi:10.1016/j.ces.2011.06.051

Zimmerman, C. M., Singh, A., & Koros, W. J. (1997). Tailoring mixed matrix composite membranes for gas separations. Journal of Membrane Science, 137(1), 145-154. doi:



  • There are currently no refbacks.

Copyright (c) 2018 Indonesian Journal of Science and Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.
StatCounter - Free Web Tracker and Counter
View My Stats