Use of Carbon Nano-Fibers in Cementitious Mortar

Muhammad Maqbool Sadiq Awan, Parviz Soroushian, Arshad Ali, Muhammad Yousaf Saqid Awan

Abstract


Cementitious materials, especially those with higher compressive strengths, provide relatively low toughness, tensile strength and strain capacity, and are susceptible to cracking under load and restrained shrinkage effects. These drawbacks were overcome through development of multi-scale reinforcement systems comprising carbon nanofibers and microfibers for high-strength cementitious mortars. Multi-scale reinforcement of the high-performance mortar produced significant gains in the flexural strength and toughness, and abrasion and impact resistance. Microstructural investigations were also conducted in order to provide insight into the structure and failure mechanisms of high-performance cementitious mortars with multi-scale reinforcement.

Keywords


Carbon; Nano-Fibers; Cementitious Mortar; Microstructural

Full Text:

PDF

References


Anshar, A. M., Taba, P., & Raya, I. (2016). Kinetic and Thermodynamics Studies the Adsorption of Phenol on Activated Carbon from Rice Husk Activated by ZnCl2. Indonesian Journal of Science and Technology, 1(1), 47-60.

Awan, M. M. S., Soroushian, P., Ali, A., & Awan, M. Y. S. (2017). High-Performance Cementitious Matrix using Carbon Nanofibers. Indonesian Journal of Science and Technology, 2(1), 57-75.

Badanoiu, A., Georgescu, M., & Puri, A. (2003). The study of'DSP'binding systems by thermogravimetry and differential thermal analysis. Journal of thermal analysis and calorimetry, 74(1), 65-75.

Bayard, O., & Plé, O. (2003). Fracture mechanics of reactive powder concrete: material modelling and experimental investigations. Engineering Fracture Mechanics, 70(7), 839-851.

Beaudoin, J. J., Feldman, R. F., & Tumidajski, P. J. (1994). Pore structure of hardened Portland cement pastes and its influence on properties. Advanced Cement Based Materials, 1(5), 224-236.

Camilleri, J., Montesin, F. E., Curtis, R. V., & Ford, T. R. P. (2006). Characterization of Portland cement for use as a dental restorative material. Dental Materials, 22(6), 569-575.

Chan, Y. W., & Chu, S. H. (2004). Effect of silica fume on steel fiber bond characteristics in reactive powder concrete. Cement and Concrete Research, 34(7), 1167-1172.

Cheyrezy, M., Maret, V., & Frouin, L. (1995). Microstructural analysis of RPC (reactive powder concrete). Cement and Concrete Research, 25(7), 1491-1500.

Childs, P., Wong, A. C., Gowripalan, N., & Peng, G. D. (2007). Measurement of the coefficient of thermal expansion of ultra-high strength cementitious composites using fibre optic sensors. Cement and concrete research, 37(5), 789-795.

Collepardi, M., Corinaldesi, V., Monosi, S., & Moriconi, G. (2002). DSP materials applications and development progress. Industria Italiana del Cemento, 540-545.

Feylessoufi, A., Villieras, F., Michot, L. J., De Donato, P., Cases, J. M., & Richard, P. (1996). Water environment and nanostructural network in a reactive powder concrete. Cement and concrete composites, 18(1), 23-29.

Guerrini, G. L. (2000). Applications of high-performance fiber-reinforced cement-based composites. Applied Composite Materials, 7(2-3), 195-207.

Hammel, E., Tang, X., Trampert, M., Schmitt, T., Mauthner, K., Eder, A., & Pötschke, P. (2004). Carbon nanofibers for composite applications. Carbon, 42(5), 1153-1158.

Hu, A., Fang, Y., Young, J. F., & Oh, Y. J. (1999). Humidity dependence of apparent dielectric constant for DSP cement materials at high frequencies. Journal of the American Ceramic Society, 82(7), 1741-1747.

Jamal Shannag, M., & Hansen, W. (2000). Tensile properties of fibre-reinforced very high strength DSP mortar. Magazine of Concrete Research, 52(2), 101-108.

Lafdi, K., Fox, W., Matzek, M., & Yildiz, E. (2008). Effect of carbon nanofiber-matrix adhesion on polymeric nanocomposite properties: Part II. Journal of nanomaterials, 2008, 5.

Lawrence, J. G., Berhan, L. M., & Nadarajah, A. (2008). Elastic properties and morphology of individual carbon nanofibers. ACS nano, 2(6), 1230-1236.

Lee, M. G., Wang, Y. C., & Chiu, C. T. (2007). A preliminary study of reactive powder concrete as a new repair material. Construction and building materials, 21(1), 182-189.

Matte, V., & Moranville, M. (1999). Durability of reactive powder composites: influence of silica fume on the leaching properties of very low water/binder pastes. Cement and Concrete Composites, 21(1), 1-9.

Metaxa, Z., Konsta-Gdoutos, M., & Shah, S. (2010). Carbon nanofiber-reinforced cement-based materials. Transportation research record: Journal of the transportation research board, (2142), 114-118.

Moranville-Regourd, M. (2002). New cementitious systems and composite materials. In Key Engineering Materials (Vol 206, pp. 1841-1846). Trans Tech Publications.

Morin, V., Cohen-Tenoudji, F., Feylessoufi, A., & Richard, P. (2002). Evolution of the capillary network in a reactive powder concrete during hydration process. Cement and Concrete Research, 32(12), 1907-1914.

Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. Cement and concrete research, 25(7), 1501-1511.

Roux, N., Andrade, C., & Sanjuan, M. A. (1996). Experimental study of durability of reactive powder concretes. Journal of Materials in Civil Engineering, 8(1), 1-6.

Sadiq M.M., Soroushian P., Balachandra A., Nano and/ or Micro-scale Reinforcement of High-Performance Cementitious Materials, Cement & Concrete Research, Submitted for Publication (2012b).

Sadiq M.M., Soroushian P., Balachandra A., Reinforcement of HighPerformance Cementitious Matrices with Relatively Low Volume Fractions of Graphite Nanomaterials, Cement & Concrete Composites, Submitted for Review (2012a).

Sadiq M.M., Soroushian P., Balachandra A., Reinforcing Affects of Multiwalled Carbon Nanotubes at Different Volume Fractions in High Performance Cementitious Pastes, Cement & Concrete Research, Submitted for publication (2012c).

Sanchez, F., & Ince, C. (2009). Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites. Composites Science and Technology, 69(7), 1310-1318.

Sanchez, F., Zhang, L., & Ince, C. (2009). Multi-scale performance and durability of carbon nanofiber/cement composites. Nanotechnology in Construction 3, 345-350.

Shannag, M. J., Brincker, R., & Hansen, W. (1996). Interfacial (fiber-matrix) properties of high-strength mortar (150 MPa) from fiber pullout. Materials Journal, 93(5), 480-486.

Shannag, M. J., Brincker, R., & Hansen, W. (1997). Pullout behavior of steel fibers from cement-based composites. Cement and Concrete Research, 27(6), 925-936.

Shannag, M. J., Hansen, W., & Brincker, R. (1994). Interfacial Debonding and Sliding in Brittle Cementmatrix Composites from Steel Fiber Pullout Tests. MRS Online Proceedings Library Archive, 370.

Shannag, M., Hansen, W., & Tjiptobroto, P. (1999). Interface debonding in fiber reinforced cement-matrix composites. Journal of composite materials, 33(2), 158-176.

Shofner, M. L., Lozano, K., Rodríguez‐Macías, F. J., & Barrera, E. V. (2003). Nanofiber‐reinforced polymers prepared by fused deposition modeling. Journal of applied polymer science, 89(11), 3081-3090.

Singh B., Kumar P., and Kaushik S.K., High performance composites for the new millennium, Journal of Structural Engineering (Madras), 28 (2001) 17-26.

Sun, G. K., & Young, J. F. (1993). Hydration reactions in autoclaved DSP cements. Advances in Cement research, 5(20), 163-169.

Sun, G. K., & Young, J. F. (1993). Quantitative determination of residual silica fume in DSP cement pastes by 29-SI NMR. Cement and concrete research, 23(2), 480-483.

Tjiptobroto, P., & Hansen, W. (1991). Mechanism for tensile strain hardening in high performance cement-based fiber reinforced composites. Cement and Concrete Composites, 13(4), 265-273.

Tjiptobroto, P., & Hansen, W. (1993). Model for predicting the elastic strain of frc containing high volume fractions of discontinuous fibers. Materials Journal, 90(2), 134-142.

Tjiptobroto, P., & Hansen, W. (1993). Tensile strain hardening and multiple cracking in high-performance cement-based composites containing discontinuous fibers. Materials Journal, 90(1), 16-25.

Washer, G., Fuchs, P., Graybeal, B. A., & Hartmann, J. L. (2004). Ultrasonic testing of reactive powder concrete. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 51(2), 193-201.

Wong, A. C., Childs, P. A., Berndt, R., Macken, T., Peng, G. D., & Gowripalan, N. (2007). Simultaneous measurement of shrinkage and temperature of reactive powder concrete at early-age using fibre Bragg grating sensors. Cement and Concrete Composites, 29(6), 490-497.

Xie, X. L., Mai, Y. W., & Zhou, X. P. (2005). Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Materials Science and Engineering: R: Reports, 49(4), 89-112.

Young, J. F. (1996). Recent advances in the development of high performance cement-based materials. In Materials for the New Millennium (pp. 1101-1110). ASCE.

Zanni, H., Cheyrezy, M., Maret, V., Philippot, S., & Nieto, P. (1996). Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using 29Si NMR. Cement and Concrete Research, 26(1), 93-100.

Živica, V. (1999). Possibilities of a novel use of silica fume in mineral binding systems. Construction and Building Materials, 13(5), 271-277.




DOI: http://dx.doi.org/10.17509/ijost.v2i2.8001

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Indonesian Journal of Science and Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.

StatCounter - Free Web Tracker and Counter View My Stats