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A B S T R A C T   A R T I C L E   I N F O 

Agricultural production contributes significantly to 
greenhouse gas (GHG) emissions and global climate change. 
This study conducts a systematic literature review to 
examine the evolution and drivers of agricultural GHG 
emissions. We analyzed Web of Science, Scopus, and Google 
Scholar data using bibliometric and thematic methods. Our 
analysis identified emission sources such as energy use, soil 
management, fertilizer application, and livestock 
management. It also discussed mitigation measures such as 
sustainable practices, precision agriculture, and renewable 
energy. The findings showed that crop cultivation, livestock 
activities, and land-use change remained key sources of 
emissions. Technological innovations and policy-driven 
strategies are reshaping the research landscape. This study 
provides a framework for understanding agricultural GHG 
emissions and supporting interventions to reduce the 
sector's carbon footprint as well as Sustainable Development 
Goals (SDGs). 
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1. INTRODUCTION 
 

Agriculture feeds people. That is the reason many reports regarding agriculture [1-12]. 
However, it also emits about 24 % of human-caused greenhouse gases. Most emissions come 
from livestock management and crop cultivation. Land-use practices and soil also add 
substantial emissions [13-15]. These activities release carbon dioxide, nitrous oxide, and 
methane [16, 17]. Livestock operations account for over 44 % of methane emissions. Fertilizer 
use and soil degradation drive most nitrous oxide emissions [18-20]. Rising food demand and 
intensification have increased emissions [21]. Precision agriculture and renewable energy can 
cut emissions [22-27]. Agroforestry, minimum tillage, and crop rotation can also reduce 
emissions [28, 29]. Carbon pricing and subsidies for low-emission technologies support 
reduction efforts [30, 31]. Agricultural systems vary by region. Local policies must reflect 
social, economic, climatic, and ecological contexts [32-34]. For example, Sub-Saharan Africa 
and Southeast Asia require frameworks different from those of Europe and North America [  
35, 36]. 

Several literature reviews have examined sources of agricultural greenhouse gas (GHG) 
emissions and corresponding mitigation strategies. One study explored emission-reduction 
strategies in crop production and livestock management [37]. Another integrated climate-
smart agriculture practice to reduce emissions while enhancing system resilience [38]. Global 
contributions of agricultural subsectors to GHG emissions have been mapped in detail [13]. 
Fertilizer use and soil management have been identified as major drivers of N₂O emissions 
[39]. The impact of precision agriculture technologies on both productivity and emissions has 
also been investigated [22]. A systematic review of farm-level mitigation policies in the UK 
offered additional insights [40]. Carbon shadow prices along the Belt and Road Initiative have 
been analyzed to assess emission costs [41]. A comprehensive review of carbon farming 
practices within the EU provided policy-relevant perspectives, though limited in 
generalizability beyond the European context [42]. Life cycle assessments on primary pig 
production have been synthesized, albeit with limited applicability to integrated agricultural 
systems [43]. Mechanisms for soil carbon sequestration via biochar have been explored, yet 
socio-economic and policy barriers remain underexamined [44]. While these studies offer 
valuable insights, they often lack interdisciplinary integration, comparative evaluation of 
regional mitigation practices, and analyses of policies that support the adoption of new 
technologies. This research aims to address these gaps by developing a holistic theoretical 
framework and empirically evaluating mitigation strategies across diverse regional contexts. 

This study develops a theoretical framework through a systematic literature review and 
bibliometric and thematic analyses. It identifies the primary sources and pathways of 
greenhouse gas emissions in agriculture, traces their evolution, and evaluates current 
mitigation strategies. It focuses on key production functions such as fertilizer use, enteric 
fermentation, and soil management. This analysis examines how technological innovations 
and policies affect emission patterns. It identifies four primary emission sources. These 
sources are enteric fermentation, fertilizer-driven nitrous oxide, carbon dioxide from tillage 
and machinery, and indirect energy inputs. It highlights a shift from quantifying emissions to 
solution-oriented research. Key approaches include carbon sequestration, precision 
agriculture, and renewable energy. The findings offer insights for designing sustainable 
agricultural practices that balance economic and environmental goals and support climate 
change mitigation. This study supports current issues in the sustainable development goals 
(SDGs). 
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2. METHODS 
 

The study followed PRISMA 2020 guidelines for reproducibility [45-47]. The methodology 
had seven sequential stages. The first stage defined eligibility criteria. The second stage 
identified information sources and set the search strategy. The third stage defines research 
questions. The fourth stage carried out the selection process. The fifth stage handled data 
collection and management. The sixth stage involved data cleaning and refining. The seventh 
stage involved conducting data analysis and visualization. 

2.1. Eligibility Criteria 

We included only English-language; peer-reviewed articles published by 31 July 2024. We 
required each article to address greenhouse gas emissions in agricultural production. We 
excluded conference proceedings, technical reports, non-peer-reviewed materials, and 
articles without full-text access [46, 48]. 

2.2. Information Sources and Search Strategy 

We searched Scopus and Web of Science between August 1 and 7, 2024. We also ran 
queries in Google Scholar to collect all relevant peer-reviewed studies [50, 51]. We applied 
the Boolean string (“greenhouse gas emissions” OR “GHG emissions”) AND (“agricultural 
production” OR “farming” OR “crop production” OR “livestock emissions”) to titles, abstracts, 
and keywords. This search returned 504 unique records. Figure 1 shows the Python script we 
used to build and verify the query. 

 

Figure 1. Python code for constructing the Boolean search string for agricultural GHG 
emissions literature.  

2.3. Defining Research Questions 

We posed three guiding questions: (RQ1) What are the prevailing research themes in 
agricultural GHG emissions? (RQ2) How have these themes evolved? (RQ3) What roles do 
different production processes play in generating emissions? Figure 2 shows the conceptual 
framework for RQ1. Figure 3 shows the temporal framework for RQ2. 
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Figure 2. Agricultural GHG emissions schematic.  

 

 

Figure 3. Schematic diagram illustrating the yearly evolution of research topics in GHG 
emissions in agricultural production.  

2.4. Selection Process 

Out of 150 full-text articles that met the initial inclusion criteria, 41 did not report 
quantitative GHG data and were excluded. This left 109 articles for the final analysis. Figure 4 
shows the PRISMA 2020 flow diagram of records identified, screened, and included in the 
review of greenhouse gas emissions in agriculture [52]. 
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Figure 4. PRISMA 2020 diagram of agricultural GHG review. 

2.5. Data Collection and Management 

Metadata for the 150 included articles was exported from Mendeley Desktop in BibTeX 
format, encompassing title, abstract, authors, journal, year, citation count, DOI, and 
keywords. We manually verified and corrected all entries against Crossref and publisher 
websites to ensure accuracy [53, 54]. 

2.6. Data Cleaning and Refining 

We imported the cleaned BibTeX data into Biblioshiny (Bibliometrix v4.1 in R 4.2.1) to 
create a structured data frame [55]. The metadata of each document, including title, authors, 
journal, year, DOI, keywords, and citations, was standardized. We resolved missing entries via 
Crossref, removed duplicates by DOI and title, and harmonized author names and keyword 
variants [56, 57]. Full texts were then analyzed in Leximancer 4.5 using a customized 
stop‑word list and sensitivity of 0.8 to generate robust thematic datasets [58]. 

2.7. Data Analysis and Visualization 

We applied three platforms for comprehensive insight: Biblioshiny for co‑citation analysis, 
keyword co‑occurrence mapping (threshold ≥ 5), Louvain clustering, and temporal trend 
charts; Leximancer for tf-idf-weighted concept maps across thirty themes; and VOSviewer for 
co‑authorship network visualization [59-61]. Outputs include the PRISMA flow diagram, 
network graphs, thematic evolution charts, concept maps, and author‑network diagrams, 
together offering a multi‑angled perspective on agricultural GHG emissions research. 

3. RESULTS AND DISCUSSION 
 

This chapter shows our bibliometric and thematic analysis results. We validated the data 
by cross-checking with standard literature indicators. The chapter addresses the three 
research questions from Chapter I. First, we examine research themes and publication trends. 
Second, we analyze annual shifts in those themes. Third, we assess the impact of production 
processes on GHG emissions. Each section presents concise, data-driven results. Each section 
ends with a brief discussion that compares our findings to those of previous studies. 
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3.1. Research Themes and Publication Trends in Agricultural GHG Emissions 

Figure 5 shows that from 1997 to July 2024, 109 articles addressed GHG emissions in 
agriculture. Annual counts were low and variable before 2009 (e.g., two articles in 1997, 
under 1 per year in the late 1990s, and 1-2 articles annually through 2009). After 2009, 
publications increased steadily, with 3 in 2010, peaking at 10 in 2013, then dipping to 4 and 3 
in 2014-2015 before stabilizing at 5-9 per year from 2016 to 2022. By July 2024, three articles 
had been published. The average annual growth since 2010 was about 8%, reflecting growing 
research interest in agricultural GHG emissions. 

 

Figure 5. Annual scientific production trend on GHG emissions in agricultural production. 

The increase in publications around 2013 likely reflects intensified research funding and 
policy focus following the IPCC’s Fifth Assessment Report and the Paris Agreement [62-64]. 
The slight dip in 2014-2015 may indicate a transitional lag as scholars shifted from 
quantification to mitigation studies [65, 66]. From 2017 onward, there has been more work 
on precision agriculture, using soil sensors and drones for targeted fertilizer and irrigation [67-
70]. Recent studies suggest that this approach can reduce N₂O emissions by 15-20% through 
optimized inputs [71, 72]. 

The thematic map in Figure 6 identifies four quadrants. Motor themes (high development 
and relevance) include climate change mitigation, soil organic carbon, and carbon 
sequestration. Niche themes (high development, low relevance) cover sustainability, energy 
use, and urban agriculture. Basic themes (high relevance, low development) split into two 
clusters: measurement and evaluation (“global warming potential,” “life cycle assessment,” 
“greenhouse gas emissions”) and core emission terms (“greenhouse gases,” “methane,” 
“mitigation”). Emerging/declining themes (low development and relevance) feature 
agroforestry, GHG emission, reduced tillage, and biochar. 
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Figure 6. Thematic map.  

Motor themes shift from measuring emissions to focusing on solutions [73, 74]. Niche 
themes show a growing interest in specific sustainable practices [75, 76]. Basic themes show 
the continued importance of standard metrics [77, 78]. The emerging and declining cluster 
points to future study areas such as biochar and reduced tillage techniques [79, 80]. 

The treemap in Figure 7 shows keyword frequencies. “Greenhouse gas emissions” appears 
in 7% of records. “Greenhouse gases” and “methane” each account for 6%. “Mitigation” 
appears in 5% of records. “Carbon footprint” appears in 4%. The keywords “carbon dioxide,” 
“nitrous oxide,” and “climate change” each appear in 4%. “Life cycle assessment,” “carbon 
sequestration,” and “global warming potential” each appear in 3%. Lesser-used terms like 
“renewable energy,” “IoT,” and “biochar” account for 1-2%. These lesser-used terms indicate 
emerging technological and policy trends. 

The keyword distribution shows that the field is evolving. Early studies focused on 
quantification. Recent studies pair measurement with mitigation strategies and new 
technologies [81, 82]. This trend suggests that future research must explore under-
represented topics. These topics include precision technologies and policy integration [83-
85]. 

3.2. Annual Evolution of Research Topics in Agricultural GHG Emissions 

Figure 8 shows that research on agricultural GHG emissions evolved through distinct 
periods. From 1997 to 2011, studies focused on carbon dioxide, mitigation, and greenhouse 
gas emissions. From 2012 to 2014, researchers explored agriculture, methane, global 
warming potential, life cycle assessment, and greenhouse gas emissions. From 2015 to 2018, 
they studied greenhouse gas emissions, carbon footprint, carbon sequestration, and 
sustainability in life cycle assessment. From 2019 to 2021, they focused on carbon footprint, 
carbon sequestration, and greenhouse gases. From 2022 to mid-2024, they focused mainly 
on their carbon footprint. 
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Figure 7. Tree map of the theme. 

 

Figure 8. Thematic evolution. 

Figure 9 shows a conceptual map with three clusters. The biochar cluster focuses on 
biochar as a carbon-mitigation technology. The mitigation solutions and technology cluster 
include greenhouses, renewable energy, IoT, carbon neutrality, and life cycle analysis. The 
basic topics cluster covers greenhouse gas emissions, plant production, soybean, policy, and 
global warming potential. Figure 10 tracks keyword emergence over time. Carbon dioxide first 
appeared around 2006. Nitrous oxide emerged around 2010-2011. Methane and mitigation 
spiked in 2011-2012. “Greenhouse gas emissions” peaked in 2013, and “GHG emissions” in 
2016. “Carbon sequestration” appeared and peaked around 2015-2016. “Carbon footprint” 
rose sharply around 2018. 
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Figure 9. Conceptual map and keywords' cluster. 

 

Figure 10. Yearly trend of greenhouse gas emissions in agriculture 

These patterns show a progression from early quantification (1997-2011) to 
methodological and impact assessment (2012-2014) and finally to solution-oriented research 
(2015-2024). A strong focus on life cycle assessment during 2012-2018 reflects the emphasis 
in literature [86, 87]. The rise of carbon sequestration after 2015 matches post-Paris 
Agreement priorities. The dominance of carbon footprint since 2022 highlights a growing 
emphasis on emission accountability. The biochar cluster supports several data points [44, 88, 
89] on biochar’s role in soil carbon storage. The mitigation solutions and technology cluster 
confirm previous data [24, 90, 91] on integrating IoT and renewable energy into low-emission 
agriculture. The basic topics cluster underlines an enduring focus on emission metrics and 
policy frameworks. 
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3.3. Influence of Agricultural Production Processes on GHG Emissions 

Figure 11 shows that “Production” appears in 18,686 co-occurrences. It covers all stages, 
from planting and harvesting to processing and waste management. It captures direct 
emissions (e.g., enteric CH₄ from livestock) and indirect CO₂ from machinery. “Emissions” 
appears in 17,091 records. It highlights CH₄, N₂O, and CO₂ and follows IPCC quantification 
standards. The “Soil” theme appears in 11,635 hits. It links tillage and fertilization practices to 
N₂O emissions and carbon sequestration potential. The “Crop” theme appears in 10,001 hits. 
It covers crop-specific impacts, such as anaerobic rice paddies, and mitigation via rotation. 
“Energy” appears in 8,821 hits. It covers fossil-fuel use in machinery, transport, and fertilizer 
production. The “Climate” cluster appears in 6,060 hits. It links agricultural emissions to 
carbon pricing and resilience policies. “IPCC” appears in 976 hits. It underscores the role of 
standardized GHG accounting for transparency and cross-country comparison. Minor themes 
include data availability, oil, review, and the USA. They point to gaps in data access, fossil-fuel 
influence, the importance of review syntheses, and a U.S. policy emphasis. 

 

Figure 11. Cloud words of interconnected concepts of GHG. 

These patterns confirm a holistic supply-chain perspective on emissions [92-94] and 
emphasize livestock management’s role in enteric CH₄ and manure emissions. Soil 
conservation measures such as reduced tillage and cover crops emerge as key to lowering 
N₂O, while crop choices and rotations [95-97], such as alternative rice varieties with managed 
irrigation, offer CH₄ reductions [98-100]. The energy cluster highlights the urgency of shifting 
to low-emission machinery and renewable energy [101-103]. Precision agriculture 
techniques, including sensor-based fertilization, targeted pesticide application, and precision 
irrigation, show 10-15% reductions in N₂O and CO₂ [104-106]. Finally, the prominence of 
climate policy and IPCC standards underscores their necessity for guiding low-carbon 
agricultural practices [107, 108]. 

3.4. Greenhouse Gas Emissions Factors in Agriculture 

Greenhouse gas (GHG) emissions from the agricultural sector are one of the main 
contributors to global climate change [109]. These emissions arise from various activities 
related to crop cultivation, livestock farming, and land management. In general, the main 
sources of greenhouse gas emissions in agriculture involve methane (CH₄), nitrous oxide 
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(N₂O), and carbon dioxide (CO₂), which are released through biological, chemical, and 
mechanical processes that occur in agricultural production activities [110].  

Methane is a greenhouse gas that has a global warming potential of about 28-36 times 
greater than CO2 (depending on whether various indirect climate effects are included) over 
100 years [111]. In the agricultural sector, methane is mainly produced through anaerobic 
fermentation or the decomposition of organic matter without oxygen. Anaerobic 
fermentation is a biological process carried out by microorganisms (especially methanogenic 
bacteria) to decompose organic matter in an oxygen-free (anaerobic) environment [112]. This 
process produces various gases, with methane (CH₄) as one of the main products, besides CO₂ 
and H₂. In the agricultural context, anaerobic conditions are often created due to stagnant 
water, accumulation of organic waste, or closed or unaerated waste management. Anaerobic 
fermentation involves four main stages [113], including: 
(i) Hydrolysis. Hydrolysis is the process of breaking down large organic polymers such as 

cellulose, proteins, and fats into smaller, water-soluble molecules such as glucose, amino 
acids, and fatty acids. This stage relies on the enzymatic activity of microorganisms such 
as Clostridium and Bacillus, which secrete cellulase, protease, and lipase enzymes. 
However, hydrolysis is often the main limiting step, especially for high-fiber wastes such 
as straw. The general macromolecular reactions that occur in this stage are:  
Carbohydrates → Glucose; Protein → amino acids; Fat → glycerol + fatty acids. 

(ii) Acidogenesis. The products of hydrolysis then enter the acidogenesis stage, where 
acidogenic bacteria such as Lactobacillus and Peptostreptococcus ferment them into 
organic acids (especially acetate, propionate, and butyrate), alcohol, and H₂ and CO₂ 
gases. 

(iii) Acetogenesis. The products of the acidogenesis stage become important substrates for 
the acetogenesis stage, where compounds such as propionate and butyrate, which 
cannot be directly used by methanogens, are converted into acetic acid, H₂, and CO₂ by 
acetogenic bacteria such as Syntrophomonas in a syntrophic relationship with 
methanogens. This stage is very dependent on a low partial pressure of H₂ so that the 
reaction remains thermodynamically favorable. 

(iv) Methanogenesis. Finally, in the methanogenesis stage, methanogenic archaea such as 
Methanosarcina and Methanobacterium convert acetic acid and hydrogen into methane 
(CH₄) and carbon dioxide. This process can take place via the acetoclastic pathway (using 
acetate) or the hydrogenotrophic pathway (using H₂ and CO₂). 

The main sources of methane include [114]: 
(i) Flooded rice fields. Flooded rice fields create an anaerobic environment in the soil, which 

supports the activity of methanogenic microbes. These microbes break down organic 
matter such as straw, compost, and crop residues into CH₄. 

(ii) Enteric fermentation from ruminant livestock. Microorganisms in the rumen digest fiber 
through fermentation, producing methane, which is then released through belching and 
respiration of the livestock. 

(iii) Livestock manure management. Livestock waste stored under anaerobic conditions (e.g., 
in ponds or tanks without aeration) will undergo fermentation, producing significant 
amounts of CH₄. 

N₂O is a greenhouse gas with a GWP of about 298–300 times greater than CO₂, and is the 
most potent gas from the agricultural sector in terms of impacts on climate change and ozone 
depletion [115]. N₂O emissions from agricultural land occur mainly through the process of 
nitrogen transformation in the soil, which is mediated by the activity of soil microorganisms 
under certain environmental conditions [116]. The two main biological processes responsible 
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are nitrification and denitrification [117]. In the nitrification stage, nitrogen in the form of 
ammonium (NH₄⁺), resulting from the decomposition of organic matter or synthetic 
fertilizers, is converted into nitrate (NO₃⁻) by nitrifying bacteria such as Nitrosomonas and 
Nitrobacter under aerobic conditions. In contrast, under anaerobic conditions, denitrification 
occurs when denitrifying bacteria such as Pseudomonas and Clostridium reduce nitrate (NO₃⁻) 
to nitrogen gas (N₂), with N₂O as an intermediate product that can be released into the 
atmosphere. An imbalance in soil oxygen levels can cause N₂O accumulation due to 
incomplete denitrification. 

Furthermore, N₂O emissions are greatly influenced by the amount and type of nitrogen 
applied, as well as the method and timing of fertilization. Over-application of nitrogen 
fertilizers, whether from synthetic sources such as urea or organic sources such as manure, 
can cause a surplus of nitrogen in the soil that cannot be absorbed by plants. This excess 
nitrogen then becomes a substrate for microorganisms that produce N₂O. Not only that, but 
irrigation systems and soil moisture play an important role. Soil that is saturated with water 
or frequently irrigated, such as in rice fields or fields that are not properly irrigated, creates 
an anaerobic environment that accelerates the rate of denitrification. This condition increases 
the possibility of N₂O formation [115]. Therefore, to reduce N₂O emissions from agriculture, 
efficient nitrogen management practices are needed, including the use of balanced fertilizers, 
controlled irrigation, and the selection of the right planting and fertilization times. Carbon 
dioxide (CO₂) is one of the main greenhouse gases released from the agricultural sector, both 
through natural processes and due to human intervention. In the context of agriculture, the 
sources of CO₂ emissions are very varied and interrelated. One of the main contributors is soil 
respiration and organic matter decomposition, in which soil microorganisms and plant roots 
use oxygen and release CO₂ as a by-product. This process is part of the natural carbon cycle, 
but can be greatly increased when there is a lot of rapidly decomposing organic matter, 
especially in soils that are frequently disturbed by plowing or intensive cultivation [116]. 

In addition, the burning of agricultural biomass, such as rice straw, corn stalks, or other 
crop residues used to clear land, is a significant contributor to the release of CO₂ directly into 
the atmosphere. This practice, which is still common in many rural areas, not only releases 
carbon but also removes the potential for organic matter to be returned to the soil as natural 
fertilizer. CO₂ emissions are also greatly influenced by the use of fossil fuels in agricultural 
mechanization activities, such as tractors, tillage machines, irrigation pumps, and other heavy 
equipment that use diesel or gasoline. The combustion of these fuels directly produces large 
amounts of CO₂, especially in modern and intensive agricultural systems. No less important is 
the impact of land use changes, especially the conversion of forests, shrubs, or peatlands to 
agricultural land. This deforestation process causes the release of massive amounts of carbon 
that were previously stored in vegetative biomass and soil. When trees are cut down, roots 
die, and soils are turned or drained, carbon stored for hundreds of years can be quickly 
released as CO₂. Overall, although some CO₂ comes from natural processes, human 
intervention in agricultural intensification, biomass burning, use of fossil fuel engines, and 
land conversion makes this sector one of the important contributors to increasing CO₂ 
concentrations in the atmosphere and accelerating the rate of climate change [117]. 

Based on the previous explanation, the detailed discussion of the biological, chemical, and 
mechanical processes or activities that occur in agricultural production activities that 
contribute to the production of greenhouse gas emissions is explained as follows. 
(i) Use of synthetic nitrogen fertilizers 

The use of synthetic nitrogen fertilizers in modern agricultural activities has an important 
role in increasing crop productivity, but is also one of the main sources of greenhouse gas 
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emissions, especially nitrous oxide (N₂O) [118]. Fertilizers such as urea [CO(NH₂)₂], 
ammonium nitrate (NH₄NO₃), ammonium sulfate [(NH₄)₂SO₄], and other forms of nitrogen are 
absorbed by plants in the form of nitrate ions (NO₃⁻) and ammonium ions (NH₄⁺). However, 
only some of this nitrogen can be absorbed efficiently by plants. The remaining unabsorbed 
nitrogen will remain in the soil and trigger microbiological processes that can produce N₂O 
gas emissions into the atmosphere [119, 120]. The main processes that cause N₂O emissions 
from nitrogen fertilizers are nitrification and denitrification, which are part of the soil nitrogen 
cycle and are carried out by microorganisms such as Nitrosomonas, Nitrobacter, and 
Pseudomonas. Nitrification occurs under aerobic (oxygenated) conditions, where ammonium 
(NH₄⁺) is gradually converted to nitrite (NO₂⁻) and then to nitrate (NO₃⁻). At this stage, a small 
amount of N₂O can be produced as a by-product, especially if oxygen is limited or soil 
conditions change to semi-aerobic. Meanwhile, denitrification is an anaerobic (oxygen-
deficient) process, in which nitrate (NO₃⁻) is reduced to nitrogen gas (N₂) through a series of 
stepwise reductions: NO₃⁻ → NO₂⁻ → NO → N₂O → N₂ [121, 122]. In flooded, compacted, or 
organic-rich soil conditions (so that microbial respiration rates are high and oxygen is quickly 
depleted), this process becomes dominant and produces nitrous oxide (N₂O) as an 
intermediate product. If the reduction is incomplete due to a lack of donor electrons or 
microbial interference, N₂O will be released into the atmosphere before it has time to become 
harmless N₂ [123]. 

The level of N₂O emissions from soil are highly dependent on several factors [124, 125], 
including: 
(a) Soil moisture: The more saturated the soil is with water, the more likely denitrification 

and N₂O emissions are. 
(b) Temperature: Microbial activity increases at warm temperatures (25–35°C), accelerating 

nitrogen conversion and gas emissions. 
(c) Soil pH: The optimal pH for nitrification activity is in the neutral range (6.5–7.5), while 

denitrification is more likely to occur at slightly lower pH. 
(d) Organic matter content: High soil organic carbon content provides an energy source for 

denitrifying microorganisms, leading to more N₂O formation. 
(e) Fertilizer type and dosage: Nitrate-based fertilizers are more direct in causing emissions 

than ammonium fertilizers, which still need to undergo nitrification. 
In addition to biological and chemical aspects, the method of fertilizer application also has 

a major impact on the potential for N₂O emissions. Applying large amounts of fertilizer at 
once (broadcasting) increases the possibility of excess nitrogen that is not absorbed by plants. 
This is exacerbated by high rainfall or excessive irrigation, which can cause leaching (nitrate 
washing) and increased soil moisture, ideal conditions for denitrification. Meanwhile, 
fertilizer application with precision farming techniques, such as split application (division of 
fertilization time), deep placement (placement in the soil), or the use of nitrification 
inhibitors, has been shown to significantly reduce N₂O emissions [126]. 

Overall, N₂O produced from the use of synthetic nitrogen fertilizers has a global warming 
potential (GWP) almost 300 times greater than CO₂ over 100 years. This means that even 
though its concentration is lower than CO₂ in the atmosphere, the climate impact of each N₂O 
molecule is much greater. In addition to being a GHG, N₂O also acts as a stratospheric ozone-
depleting gas, making it a dangerous pollutant in two environmental aspects at once. 
Therefore, efforts to manage nitrogen fertilization more efficiently and environmentally 
friendly manner are very important to reduce GHG emissions from the agricultural sector 
[118].  
(ii) Enteric fermentation in livestock 
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Enteric fermentation in ruminant livestock is one of the main sources of greenhouse gas 
emissions from the agricultural sector, especially in the form of methane gas (CH₄), which 
contributes significantly to global warming. This process naturally occurs in the rumen, which 
is the first part of the digestive system of ruminant animals such as cows, goats, and sheep, 
which is designed to digest feed materials rich in crude fiber, especially cellulose and 
hemicellulose, which cannot be digested directly by animal enzymes [127]. In the rumen, feed 
materials are fermented by a complex community of microorganisms, including cellulolytic 
bacteria, protozoa, and especially methanogenic archaea (methanogens). This fermentation 
produces volatile fatty acids (such as acetate, propionate, and butyrate), which are used by 
animals as an energy source, as well as by-products in the form of gases such as carbon 
dioxide (CO₂) and hydrogen (H₂). The hydrogen gas formed cannot accumulate in large 
quantities because it will disrupt the fermentation balance [127]. To maintain the stability of 
the rumen environment, the hydrogen is used by methanogenic microorganisms in the 
reduction reaction of CO₂ to methane (CH₄), through the process in reaction (1): 
CO2 + 4H2 → CH4 + 2H2O                                                                                             (1) 

The methane gas produced is not absorbed by the animal's body, but is released into the 
atmosphere mainly through eructation (belching), and in small amounts through respiration 
and excretion [128]. This emission is chronic and occurs every day throughout the life of the 
ruminant animal. The level of methane emission from enteric fermentation is greatly 
influenced by several factors [129]: 
(a) Type and quality of feed: Feed with high crude fiber content (such as hay or straw) tends 

to increase methane production because fermentation produces more H₂. Conversely, 
high-quality feed (such as grain, corn silage) that is more easily digested tends to reduce 
CH₄ emissions. 

(b) Type of animal and breed: Dairy cattle usually produce more methane than goats or 
sheep because of their larger body size and feed consumption. 

(c) Physiological status and age: Pregnant, lactating, or fast-growing cattle have a higher 
metabolism and different digestion. 

(d) Keeping system: Intensive farming with concentrate feed and proper nutrition. 
(e) Management can reduce emissions compared to extensive farming with natural 

pastures. 
Strategies to mitigate methane emissions from enteric fermentation include: 
(a) Improved feed management: Providing feed with high digestibility, feed additives such 

as fat, tannins, or essential oils that can inhibit methanogenesis. 
(b) Microbial vaccines or additives: Efforts to reduce the population of methanogens in the 

rumen biologically. 
(c) Genetic selection of livestock: Selecting animals with high feed efficiency and lower gas 

production. 
(d) Changes in livestock systems: Integration with agroforestry systems or sustainably 

managed pastures. 
(iii) Ineffective livestock waste management 

Ineffective livestock waste management is a major source of greenhouse gas emissions 
from the livestock sector, occurring when animal waste, either in solid (feces) or liquid (urine 
or a mixture of the two), is not properly treated. In such conditions, waste is often left to 
accumulate in open areas, holding ponds, or in uncovered storage tanks, creating an 
anaerobic (oxygen-poor) environment. These conditions are ideal for the growth of 
methanogenic microorganisms, a group of microbes that naturally degrade organic matter 
and produce methane gas (CH₄) as an end product [130]. 



213 | ASEAN Journal of Science and Engineering, Volume 5 Issue 2, September 2025 Hal 199-230 

DOI: https://doi.org/10.17509/ajse.v5i2.83667 
p- ISSN 2775-6793 e- ISSN 2775-6815 

This anaerobic decomposition process involves complex biochemical stages, starting from 
hydrolysis (the breakdown of complex compounds into simple compounds), acidogenesis (the 
formation of organic acids), acetogenesis (the conversion of organic acids to acetate, 
hydrogen, and CO₂), to methanogenesis, which is the production of methane by special 
microorganisms using hydrogen and carbon dioxide or acetate. The general chemical 
reactions in this stage are shown in reactions (2) and (3) [131]. 
CO2 + 4H2 → CH4 + 2H2O         (2) 
CH3COOH → CH4 + CO2         (3) 

In addition to methane, nitrous oxide (N₂O) can also be released, especially from waste 
management systems that undergo partial nitrification-denitrification processes, especially 
when there is fluctuation between aerobic and anaerobic conditions, for example, on the 
surface of open waste ponds [118]. Factors that influence GHG emissions from livestock waste 
include [132]: 
(a) Animal type and waste volume: Cattle and pigs produce large volumes of waste with a 

high organic content, so emissions tend to be higher than poultry. 
(b) Environmental temperature and humidity: High temperatures accelerate the activity of 

methanogenic microbes, thereby increasing gas production, especially in tropical areas. 
(c) Storage systems: Open ponds are more prone to producing methane than closed or semi-

closed systems. 
(d) Storage time: Waste stored longer under anaerobic conditions produces more methane 

gas. 
(e) A mixture of feces and urine: This combination increases the nitrogen and carbon 

content, which increases the potential for the formation of N₂O and CH₄. 
If livestock waste is dumped directly onto land without processing (land spreading), in 

addition to polluting the soil and groundwater due to excessive nutrient content, it also 
contributes to the release of ammonia (NH₃) and N₂O from microbiological processes in the 
soil, depending on soil moisture and aeration conditions [131]. 
(iv) Intensive land management and cultivation practices 

Intensive soil management and cultivation practices are an essential part of modern 
agricultural systems aimed at increasing productivity, but on the other hand, they also have 
a significant impact on greenhouse gas (GHG) emissions, especially carbon dioxide (CO₂), 
methane (CH₄), and nitrous oxide (N₂O). These contributions come from various biological, 
chemical, and mechanical processes that occur due to human intervention in soils and 
agroecosystems [133]. 

First, intensive tillage such as plowing and hoeing carried out repeatedly using heavy 
equipment or tractors, increases soil aeration and accelerates the oxidation of organic matter 
in it. Under normal conditions, organic matter in the soil acts as a carbon sink, but when the 
soil is physically disturbed, organic carbon is converted to CO₂ and released into the 
atmosphere. This process accelerates the mineralization of organic matter and reduces long-
term soil carbon stocks. In addition, the use of heavy equipment produces direct CO₂ emissions 
from the combustion of fossil fuels, thereby increasing the carbon footprint of the cultivation 
process [126].  

Second, minimal crop rotation or monoculture systems (planting the same type of crop 
continuously) cause degradation of soil structure and a decrease in soil microbial diversity. 
Monoculture triggers an increase in the use of chemical inputs such as fertilizers, pesticides, 
and herbicides, which not only produce GHG emissions in the production process but also 
disrupt the nitrogen and microbial carbon cycles in the soil. This imbalance leads to increased 
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N₂O emissions through the nitrification and denitrification processes by microorganisms, 
especially when nitrogen fertilizers are applied excessively [134]. 

Third, the practice of burning crop residues, such as rice straw or corn stalks, is still widely 
used to accelerate land clearing. This burning process results in the direct release of CO₂ into 
the atmosphere, as well as black carbon, a particulate component that has a very high global 
warming effect due to its ability to absorb solar heat. Black carbon also worsens air quality and 
has impacts on public health. In addition to CO₂ and black carbon, open burning also releases 
significant amounts of CH₄ and N₂O, depending on combustion conditions (whether perfect or 
not) [135].  

Fourth, the use of synthetic pesticides and herbicides does not directly produce GHG when 
applied, but the production process based on industrial chemicals contributes to CO₂ emissions 
from fossil fuels. Once applied to the soil, these compounds also affect microbial activity, 
suppressing the population of microorganisms that play a role in natural nitrogen fixation and 
decomposition of organic matter, which in turn changes the dynamics of nutrient cycles and 
GHG emissions [136]. 

Fifth, soil compaction due to excessive heavy equipment or livestock traffic causes a 
decrease in porosity and water infiltration. Compacted soil is more susceptible to anaerobic 
conditions, especially in the rainy season or on irrigated land, potentially increasing methane 
and N₂O production from anaerobic microbial activity. These anaerobic conditions change the 
microbial respiration pathway from aerobic to fermentative, which is generally more efficient 
in producing GHG gases [137]. 

Sixth, intensification practices often ignore soil conservation-based approaches such as 
mulching, cover cropping, or agroforestry conservation, which play an important role in 
stabilizing soil organic carbon and reducing emissions [138]. 

Overall, intensive farming practices contribute to accelerated soil carbon loss, increased 
demand for synthetic inputs, and GHG releases from both soil, heavy equipment, and 
agricultural input production processes. Therefore, a transformation towards conservation 
and regenerative farming practices is essential to reduce GHG emissions [139]. Some 
recommended approaches include: 
(a) Minimum tillage or no-tillage to maintain soil structure and carbon stocks. 
(b) Crop rotation and cover crops to improve soil fertility and biological diversity. 
(c) Utilization of crop residues for compost or mulch, not burning. 
(d) Agroecological farming and reduction of excess chemical inputs. 
(e) Flooded rice cultivation and its impact on methane emissions.  

One agricultural practice known to produce high methane emissions is flooded rice 
cultivation. The waterlogged conditions of rice fields create an ideal anaerobic environment 
for methanogenic microbial activity, which degrades organic matter in the soil and produces 
CH₄ [140]. This process is influenced by temperature, soil type, rice variety, and organic inputs 
(e.g., manure or straw). Flooded rice cultivation contributes around 15–20% of global 
methane emissions from the agricultural sector [141]. Innovations such as alternate wetting 
and drying (AWD) have been shown to significantly reduce emissions without reducing crop 
yields [142]. 

The process of methane formation in rice field soil that remembers rice fields occurs when 
the rice field soil is flooded, and microorganisms in the soil adapt to anaerobic conditions, 
where oxygen is not available [112]. Under these conditions, methanogenic microbes, which 
are a type of anaerobic microbe, break down degraded organic matter (such as straw, rice 
plant roots, and manure) into methane (CH₄) as the final product [143]. This process generally 
occurs in several stages, namely: 
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(a) Organic Acid Fermentation: Organic matter in the soil is broken down into organic acids 
by fermentative microbes (e.g., acidogenic bacteria) [144]   

(b) Reduction of Organic Acids to Acetate: Some microbes then convert these organic acids 
to acetate (CH3COO-) [145]   

(c) Methanogenesis: Methanogenic microbes, especially from the genera 
Methanobacterium and Methanosarcina, convert acetate to methane (CH4) and carbon 
dioxide (CO2). This process is part of the carbon cycle in flooded rice fields [146].  Reaction 
(4) shows the process of methane formation in rice field soil as follows: 

        CH3COOH → CH4 + CO2         (4) 
In this reaction, acetate (CH₃COOH), which is produced from the decomposition of organic 

matter, is converted by methanogenic microbes into methane (CH₄) and carbon dioxide (CO₂). 
This process shows how the activity of microorganisms in rice field soil can produce methane 
as a by-product [112, 140, 147]. 
(v) Land use changes, especially deforestation to open agricultural land 

The largest contribution to climate change from the agricultural sector comes from land 
use changes, especially deforestation for the expansion of agricultural land and plantations. 
When forests are cut down, especially carbon-rich tropical forests, the carbon stored in 
biomass (stems, leaves, roots) is released as carbon dioxide (CO₂) into the atmosphere [148]. 
This process not only eliminates the forest's ability to absorb carbon (function as a carbon 
sink), but also releases previously stable soil carbon stocks. Land clearing by burning 
exacerbates GHG release and causes permanent soil degradation [149]. 

The process of carbon release due to deforestation and burning causes significant carbon 
release into the atmosphere [150]. Tropical forests, which store carbon in plant biomass such 
as stems, leaves, and roots, release carbon dioxide (CO₂) when burned or degraded. This 
burning process oxidizes carbon (C) in biomass to CO₂, as described in reaction (5) [151]: 
C + O2 → CO2           (5) 

In addition, land clearing also disturbs the carbon stored in the soil. Tropical forest soil is 
rich in organic matter containing carbon, which is released into the atmosphere when the soil 
is disturbed. The process of decomposition of organic matter by microorganisms converts 
glucose (C6H12O6) into CO2 and water (H2O) as shown in reaction (6) [149]: 
C6H12O6 + O2 → CO2 + H2O         (6) 

This release of carbon from biomass and soil contributes greatly to increasing greenhouse 
gas emissions and global warming.  
(vi) Fossil fuel use in agriculture 

Fossil fuel use in agriculture is a source of GHG emissions from mechanical processes. 
Tractors, harvesters, irrigation pumps, and soil processing equipment generally use diesel or 
gasoline fuel. The combustion process of fossil fuels produces CO₂ directly. In developing 
countries, irrigation using fossil fuel pumps is very common, especially during the dry season. 
In addition, the use of coal-based electricity in the process of drying crops or cooling 
agricultural products adds to indirect emissions from this sector. 
(vii) Production and distribution of agricultural inputs 

The production and distribution of agricultural inputs is one of the sources of indirect 
greenhouse gas (GHG) emissions from the agricultural sector that is often overlooked, but has 
a significant impact on the overall carbon footprint of the food system. The production of 
various agricultural inputs—such as chemical fertilizers (especially nitrogen), pesticides, 
herbicides, and hybrid or transgenic seeds—requires large amounts of energy, much of it from 
fossil fuels [126]. For example, the production of nitrogen fertilizers through the Haber-Bosch 
process is very energy-intensive because it involves high pressure and temperature to 
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combine nitrogen from the air with hydrogen (usually from natural gas) to form ammonia. 
This process produces large amounts of carbon dioxide (CO₂) emissions, and for every ton of 
nitrogen fertilizer produced, up to 7 tons of CO₂ equivalent can be produced, depending on 
the energy efficiency and type of fuel used in the industrial process [118]. 

In addition, the production of synthetic pesticides and herbicides involves complex 
chemical reactions that also use organic solvents, heating, and cooling systems, all of which 
add to the energy consumption and potential GHG emissions of the chemical industry sector. 
Not only limited to the manufacturing process, the carbon footprint also comes from the 
packaging and storage of agricultural inputs, which generally use plastic or metal materials, 
and require controlled temperatures to maintain product stability, especially for seeds and 
pesticides [121]. 

The distribution of agricultural inputs from factories to farmers also contributes additional 
emissions. This process usually involves land transportation modes such as diesel trucks, or 
even ships and trains, in large-scale distribution systems. The longer the distance between 
the production site and the end use on the farm, the higher the emissions, especially when 
logistics are inefficient and vehicles do not use low-carbon fuels. In addition, the practice of 
transporting small quantities at high frequencies also increases the carbon intensity per unit 
of input used. 

On the other hand, farmers’ dependence on cheaply produced external inputs also 
increases their vulnerability to energy price shocks and supply crises, which indirectly 
encourages excessive use of inputs to achieve maximum yields in a short time, which 
increases environmental impacts and cumulative GHG emissions. Therefore, a sustainable 
agricultural approach that relies on local, organic, and renewable resource-based inputs is 
highly recommended [136]. For example, the use of compost or biofertilizers, botanical 
pesticides, and local seeds that are resistant to extreme climates not only reduces 
dependence on industrial inputs but also reduces the carbon footprint of the farming system 
as a whole. Finally, this study adds new information regarding SDGs, as reported elsewhere 
[152-161]. 

4. CONCLUSION 

This study identifies four main emission pathways in agriculture: enteric fermentation, 
fertilizer-driven soil nitrous oxide emissions, carbon dioxide from machinery and tillage, and 
indirect energy inputs, and show that optimized manure management, precision fertilization, 
reduced tillage practices, and renewable energy integration can enable low GHG agriculture. 
These findings align with the abstract’s objectives by pinpointing key emission sources, tracing 
their evolution, and examining the roles of technological innovations and policy measures in 
mitigation. The evidence highlights that precision agriculture tools such as soil sensors and 
drone monitoring can significantly shrink the sector’s carbon footprint through targeted 
resource use. The shift from basic emission quantification to solution-oriented research 
underscores the importance of supportive policies and interdisciplinary collaboration in 
advancing sustainable farming. This integrated framework offers policymakers, researchers, 
and practitioners’ actionable insights to align agricultural productivity with global climate 
change mitigation goals. 
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