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A B S T R A C T   A R T I C L E   I N F O 

This study proposes a hybrid predictive maintenance 
framework that integrates the Kolmogorov-Arnold Network 
(KAN) with Short-Time Fourier Transform (STFT) for intelligent 
fault diagnosis in industrial rotating machinery. The method is 
designed to address challenges posed by non-linear and non-
stationary vibration signals under varying operational 
conditions. Experimental validation using the FALEX 
multispecimen test bench demonstrated a high classification 
accuracy of 97.5%, outperforming traditional models such as 
SVM, Random Forest, and XGBoost. The approach maintained 
robust performance across dynamic load scenarios and noisy 
environments, with precision and recall exceeding 95%. Key 
contributions include a hardware-accelerated KAN 
architecture, adaptive feature selection, and integration of 
explainable AI for interpretability. This framework enables real-
time, transparent diagnostics in energy-critical, resource-
constrained environments, supporting improved asset lifecycle 
management and reduced downtime. The study advances AI-
based condition monitoring, bridging theoretical innovation 

with practical reliability in the context of sustainable industrial 
energy systems. 
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1. INTRODUCTION 
 

The reliable operation of industrial rotating machinery essentially depends on the 
condition of rolling element bearings, while their sudden failures may cause severe system 
breakdowns and significant economic losses [1,2]. Although much achievement has been 
made in condition monitoring techniques, the intrinsic complexity of bearing vibration signals, 
showing nonlinear, non-stationary behaviors under time-varying operational conditions 
working poses significant challenges for multi-fault diagnosis [3-5]. The modern industrial 
environments demand ever-increasingly sophisticated diagnostic methodologies that can 
process complex vibration signals system-bound by computational efficiency. In the 
traditional bearing faults diagnosis, conventional methods rely on traditional signal 
processing techniques such as spectral analysis and time-domain feature extraction. These 
methodologies, though at the foundation of the field, often fail in capturing the intricate fault 
patterns embedded in complex vibration signals [6,7]. Such failures in energy-critical rotating 
machinery, including turbines, compressors, and generators, directly compromise system 
reliability, energy efficiency, and sustainability in modern power and industrial energy 
systems [8-12]. 

In the last years, it has been possible to observe a great development in the use of artificial 
intelligence for fault diagnosis, with special interest regarding machinery components such as 
rolling element bearings [3,4,8]. Artificial intelligence is changing the paradigm of fault 
diagnosis by proposing new approaches based on pattern recognition and feature extraction. 
Early applications of machine learning techniques yielded promising results for fault 
classification with accuracy ranging from 75 to 85% using support vector machines and 
artificial neural networks [13]. The subsequent development of deep learning architectures 
improved the diagnostic capability with convolutional neural networks demonstrating 
accuracy rates over 90% in controlled conditions [14,15]. Recent research has increasingly 
focused on the limitations of existing methodologies. Previous study [16] explored the 
integration of multiple sensor modalities, reaching an accuracy of 92% in fault classification 
under various operational conditions. Also, another researcher studied the effect of 
environmental noise on diagnosis accuracy by developing light feature extraction techniques 
able to maintain their performance in high-noise environments [17]. However, most of these 
methods require heavy computational efforts that are not relevant in real industrial 
applications in real time. In other studies [18], they reviewed developments in methods for 
the diagnostic imperfections of the spheric roller bearing. The authors elaborate on several 
techniques for signal processing and artificial intelligence to filter noise and enhance an 
accurate fault diagnosis. This literature will help understand the current trends and challenges 
in the field. Despite considerable advances, several fault diagnosis issues remain. One of the 
main issues is noisy data and changing operating conditions [19–22]. The advent of machine 
learning has revolutionized the field of bearing fault diagnosis. Previous study [23] provides a 
comprehensive review of artificial intelligence techniques applied to fault diagnosis of 
rotating machinery. 

They discuss various machine learning algorithms, including Support Vector Machines 
(SVM), Random Forests, and Artificial Neural Networks (ANN), highlighting their ability to 
automatically learn features from data [24]. Many reports regarding this matter have been 
well-documented [25-29]. 

Another study [30] focused on demonstrating the effectiveness of machine learning in 
noisy environments and under varying working loads.  Among such developments, the KAN 
has been regarded as one of the promising methods in processing nonlinear and 
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nonstationary complex vibration signals. The most recent studies show the efficiency of KAN 
for fault diagnosis in various industrial systems. Study proposed a novel fault diagnosis model 
named KAN-HyperMP by incorporating KAN with hypergraph theory for enhancing noisy 
hypergraph-structured data processing in complex fault diagnosis tasks [31]. The proposed 
model demonstrated an accuracy of 99.70% on the SEU dataset, superior to that of some 
traditional methods like GCN and CNN. That proves again the robust KAN when handling noisy 
and complex vibration signals, which is one of the major challenges in most industrial 
applications. This also encompasses probably the most salient advantage of KAN: its 
interpretability is important in an industrial environment, where understanding the decision-
making process might be of prime importance. Utilized the KAN model in the fault diagnosis 
of high-speed maglev train suspension controllers, achieving an accuracy of 98.38% using a 
KAN-ResNet model. This approach outperformed traditional CNN models, highlighting KAN's 
capability in handling multi-parameter data and improving inference speed [32]. Similarly, 
other studies [33] introduced KAN, a KAN-based fault diagnosis system for oil-immersed 
power transformers, which achieved a weighted average F1-Score of 96.8455% and accuracy 
of 96.7728% in imbalanced real-world scenarios. This study underscores KAN's robustness 
and reliability in critical infrastructure applications. The advanced bearing fault diagnosis 
method was proposed by some researchers [34] using the combination of the Cuckoo 
Optimization Algorithm and KAN. The method optimizes the hyperparameters using COA and 
performs intelligent classification using KAN, hence providing high diagnostic accuracy with 
limited data. In the field of unmanned aerial vehicles, other researchers [35] proposed the 
VMD-KAN-LSTM model for the prediction of faults occurring in firefighting drones. Indeed, 
the integrated model presented an integrated system that performed others in accuracy and 
generalization for UAV health management to perform vital missions in new ways. For 
instance, some reports [36] introduced and adopted high-speed maglev train suspension KAN 
for fault diagnostics and showed that there was 98.38% accuracy of recognition by the KAN-
ResNet against other traditional typical CNN models. Thus, it assured KAN's powerful ability 
in processing all kinds of different parameters to efficiently improve the inference. In another 
work [37], some researchers developed in detail an optimally performed technique for 
bearing defects diagnosis based on the combination of COA and KAN. The method optimized 
the hyperparameters using COA and utilized KAN for intelligent classification, reaching a high 
diagnostic accuracy even with limited data. Within the context of unmanned aerial vehicles, 
we have proposed the VMD-KAN-LSTM model for fault prediction in firefighting drones. This 
integrated model showed superior accuracy and generalization, providing a novel solution in 
the context of UAV health management for critical operations. Although there are some 
advantages, KAN still has some challenges that should be considered in further research. For 
instance, though KAN is computationally efficient, it requires further validation for highly 
complex and dynamic environments.  

Besides, further integration of KAN with other advanced techniques, such as transfer 
learning and multi-sensor data fusion, might widen its applications to a wide range of 
industrial scenarios. Besides, the development of hardware-accelerated KAN architectures 
may further enable real-time processing in resource-constrained environments, hence 
expanding their potential for industrial deployment [38]. This also encompasses probably the 
most salient advantage of KAN: its interpretability, very important in an industrial 
environment, where understanding the decision-making process might be of prime 
importance. Although there are some advantages, KAN still has some challenges that need to 
be considered in further research. For instance, though KAN is computationally efficient, it 
requires further validation for highly complex and dynamic environments.  
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The novelty of this study lies in the following innovative contributions to advance the state 
of the art. Firstly, we introduce a robust signal processing framework capable of handling 
complex and non-stationary vibration signals acquired from operating conditions that may 
vary. It combines the most recent contributions on time-frequency analysis and integrates 
new statistical features that enhance subtle fault signature extraction. Then, a KAN 
architecture that is specifically accelerated for bearing fault classification by using dedicated 
hardware is proposed. This implementation is much more computationally efficient 
compared to the conventional machine learning techniques [20, 21], hence enabling a real-
time diagnosis for industrial applications. Thirdly, an adaptive feature selection methodology 
has been developed, which is able to select automatically the best statistical parameters with 
regard to signal characteristics and operating conditions [22, 23]. It improves classification 
accuracy while reducing computational overhead. Lastly, we introduce an extensive 
validation platform that would ensure dependable fault diagnosis for various operation 
regimes, thus overcoming a critical deficiency of the current approaches [24, 30].  

To sum up, the contribution of this paper is in the following aspects: 
(i) Developing an enhanced signal processing framework that combines advanced time-

frequency analysis with KAN architecture. 
(ii) Introducing a comprehensive statistical feature extraction methodology optimized for 

vibration signals. 
(iii) Implementing a novel hardware-accelerated KAN architecture that enables real-time 

processing capabilities. 

2. THEORETICAL FOUNDATIONS OF KOLMOGOROV-ARNOLD NETWORKS 
2.1 Mathematical background 

The KAN is based on the seminal Kolmogorov superposition theorem, one of the 
fundamental results in functional approximation theory. This theorem, proposed by Andrey 
Kolmogorov in 1957, had changed the face of the knowledge of continuous function 
representation because it showed that any multivariate function can be represented as a 
finite composition of univariate functions and addition operations [39]. It is being 
breakthrough in not only theoretical mathematics but also lays the foundation for practical 
applications in computational modeling and artificial intelligence. Kolmogorov's work 
certainly addressed problems of high-dimensional function approximation that are critical in 
everything from well physics to engineering. Later, in 1963, Vladimir Arnold developed these 
ideas further, typically, crystallizing the theorem into what is today known as the Kolmogorov-
Arnold representation theorem, thus securing its position both in mathematical theory and 
in neural network design for the most part. This theorem, established simply by Kolmogorov 
in 1957, states that any continuous multivariate function can be expressed as a virtually finite 
sum of continuous univariate functions and addition operations [40]. Indeed, this was one of 
the deepest insights that opened up a way to represent high-dimensional functions in terms 
of simpler components that are easily manageable. Further, Arnold expanded and refined it 
in 1963, arriving at what, thereafter, came to be referred to as the Kolmogorov-Arnold 
representation theorem. At the same time, Arnold has refined this theorem by providing a 
clear system of decomposition and presenting the explicit functional forms of inner and outer 
univariate mappings. That indeed proved to guarantee a higher computational feasibility with 
efficient methods of constructing the required functions for this representation, particularly 
of high-dimensional systems. What those works were explaining quite clearly was how, in 
practice, to do what Kolmogorov had in mind, while laying down, for those specific matters, 
the theoretical grounds wherefrom his approach could then be adopted to neural 
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computation and to modeling complicated systems. Hence, the refinement yields a general 
functional decomposition platform when prominent contributions are made regarding 
advancement in both mathematics and neural computations [41,42]. Formally, the theorem 
states that any continuous function can be expressed in equation (1): 

𝑓(𝑥1, … , 𝑥𝑛) = ∑  2𝑛
𝑞=0 Φ𝑞 (∑  𝑛

𝑝=1 𝜙𝑝,𝑞(𝑥𝑝))                                 (1) 

where f is the continuous function on the n-dimensional unit cube,  Φ𝑞 and  𝜙𝑝,𝑞 are the 

continuous univariate functions, and n represents the input dimension. This formulation 
underscores the ability of KAN to approximate multivariate functions through a series of 
univariate transformations and summation operations, thus facilitating efficient modeling of 
complex nonlinear systems. 

2.2 KAN architecture for fault diagnosis 

The theoretical foundation of the Kolmogorov-Arnold representation KAN theorem is 
translated into a practical neural network architecture in KAN [41]. The theory of KAN present 
in architecture is specifically designed to approximate high-dimensional, nonlinear functions 
efficiently. The generalized structure of the network is given by the equation (2): 

𝑦 = ∑  𝑀
𝑖=1 𝑤𝑖𝜎(∑  𝑁

𝑗=1 𝑣𝑖𝑗𝜙𝑗(𝑥𝑗) + 𝑏𝑖)                                          (2) 

where M represents the number of outer neurons; N denotes the input dimension; σ is a 
nonlinear activation function (e.g., sigmoid or ReLU);  𝜙𝑗  are the inner representation 

functions applied to the input features; and, 𝑤𝑖, 𝑣𝑖𝑗, 𝑏𝑖   are learnable parameters that are 

optimized during the training process. 

2.3 Learning dynamic 

Implementing an adapted form of the backpropagation algorithm, (KAN) breaks with 
conventional practices by focusing on the optimization of pairs of univariate functions 
simultaneously with their related weights. This unique model allows efficient gradients to be 
calculated through both inner transformations represented by ϕj and the outer summation 
layers of the network. Regularization methods are integrated into the framework of the 
algorithm to protect the model from overfitting. At the same time, adaptive learning rates are 
used to cope with the variable sensitivities found in univariate functions without 
compromising the concise and explicit nature of the network. As an effort towards parameter 
optimization, the network focuses on minimizing the loss function, which is used to measure 
the difference between predicted and actual results. The loss's derivative concerning the 
weights is expressed by the equation (3): 

𝜕𝐿

𝜕𝑤𝑖
= ∑  𝐾

𝑘=1 𝛿𝑘
𝜕𝑦𝑘

𝜕𝑤𝑖
                                (3) 

where L signifies the loss function, and δk corresponds to the error gradient at the k-th 
output. 

2.4 Preprocessing and Feature Integration 

The methodology begins with a preprocessing stage designed to standardize the extracted 
statistical features. The input vector X={x1,x2,…,xn}, which includes both time-domain and 
frequency-domain features, undergoes normalization through the following transformation 
in equation (4): 
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𝑥′ =
𝑥𝑖−𝜇𝑖

𝜎𝑖
         (4) 

where μᵢ and σᵢ represent the mean and standard deviation of the i-th feature, respectively. 
This standardization ensures uniform feature scaling while preserving the relative 
relationships between different fault indicators. 

2.5 Network Configuration for Fault Classification 

The KAN architecture implemented for fault diagnosis consists of three primary 
components, in the following the main steps of the algorithms.  
(i) Input Transformation Layer: The first layer implements individual univariate functions 

φⱼ(xⱼ) for each input feature. These functions are realized through modified sigmoid 
activations in formula (5): 

𝜑𝑖(𝑥𝑗) =
1

1+ 𝑒
−∝𝑗(𝑥𝑗+𝑏𝑗)

                  (5) 

where αⱼ and bⱼ are the learnable parameters optimized during training. 

(ii) Intermediate Mapping Layer: The intermediate layer performs the Kolmogorov-Arnold 
mapping through the composition as observed in equation (6): 

ℎ𝑞 = ∑  𝑛
𝑝=1 𝑣𝑝𝑞𝜑𝑝(𝑥𝑝) + 𝑏𝑞                  (6) 

where vpq represents the weight connections, and bq denotes the bias terms. 

(iii) Classification Layer: The final layer implements a modified softmax activation for 
multiclass fault classification, which uses equation (7): 

𝑦𝑘 =
𝑒𝑤𝑘

𝑇ℎ+𝑏𝑘

∑  𝐾
𝑖=1  𝑒𝑤𝑖

𝑇ℎ+𝑏𝑖
                                  (7) 

where K represents the number of fault classes and wk denotes the weight vector for the 
class 𝑘. 

2.6 Training and Optimization Protocol 

The network training employs a composite loss function that combines classification 
accuracy with regularization terms, as observed in equation (8): 

𝐿 = − ∑  𝑁
𝑖=1 ∑  𝐾

𝑘=1 𝑦𝑖𝑘log (𝑦̂𝑖𝑘) + 𝜆1 ∥ 𝑊 ∥2+ 𝜆2 ∑  𝑛
𝑖=1 ∥∥𝜑𝑗∥∥

1
           (8) 

where N represents the batch size; yᵢₖ denotes the true label; ŷᵢₖ represents the predicted 
probability; λ₁ and λ₂ are regularization coefficients; ‖W‖₂ represents the L2 norm of the 
weight matrices; and ‖φⱼ‖₁ denotes the L1 norm of the univariate functions 

2.7 Fault Diagnosis Implementation 

The fault diagnosis procedure follows a systematic workflow, and the following steps are 
used to prepare the features.  
(i) Feature Processing: Input features undergo normalization and are mapped through the 

learned univariate functions φⱼ(xⱼ). 
(ii) Pattern Recognition: The transformed features are processed through the intermediate 

mapping layer to extract fault-specific patterns, which can be shown in equation (9): 

𝑧𝑞 = Φ𝑞(∑  𝑛
𝑝=1  𝑣𝑝𝑞𝜑𝑝(𝑥𝑝) + 𝑏𝑞)                  (9) 
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(iii) Classification Decision: The final classification layer generates probability distributions 
over possible fault classes as expressed in equation (10): 

𝑃(𝑦𝑘 ∣ 𝑥) =
𝑒𝑓𝑘(𝑥)

∑  𝐾
𝑖=1  𝑒𝑓𝑖(𝑥)                                  (10) 

The implementation incorporates error checking and confidence estimation mechanisms 
to ensure reliable fault diagnosis in industrial settings. The confidence score for each 
classification decision is computed as shown in equation (11): 

𝐶 = 1 − 𝐻(𝑃)/log (𝐾)                            (11) 

where H(P) represents the entropy of the probability distribution, and K denotes the number 
of fault classes. 

3. METHODS 
 

The proposed KAN-based synthesized methodology for bearing fault diagnosis under 
different conditions is investigated.   The originality of this work is to embed advanced signal 
processing together with advanced machine learning for fault classification with much 
robustness. Such a methodology is comprised of three main elements: a feature extraction 
framework, which would carry the time and frequency domain characteristics of the vibration 
signals; KAN implementation designed for fault diagnosis; and hardware acceleration 
techniques for real-time processing. 

The feature extraction framework essentially constitutes the core of our fault diagnosis 
system, serving as the primary component for processing raw, clear vibration signals and 
deriving meaningful, highly diagnostic indices. This framework employs time-domain and 
frequency-domain analysis to comprehensively and honestly capture the clear characteristics 
of bearing faults in most cases. The selected features are based on their demonstrated 
effectiveness in prior studies and their suitability for real-time, complete applications, 
ensuring both diagnostic accuracy and computational efficiency. 

3.1 Time-Domain Features 

A variety of features in both the time and frequency domains were extracted to analyze 
the vibration signals more deeply. The reason for choosing these features is that they have 
proven their capabilities in prior research to extract underlying characteristics from the 
vibration signals [21, 22, 43]. Segments of size 1000 instances were used to perform feature 
extraction to get a robust and meaningful feature representation. The statistical feature 
extraction framework forms one of the important components in bearing fault diagnosis, 
covering both time-domain and frequency-domain vibration signal characterization. It offers 
the possibility of finding distinctive fault patterns from simple mathematical transformations 
of raw sensor measurements. Features are directly extracted from the raw vibration signal 
x(t) in terms of time-domain analysis and provide temporal characteristics related to bearing 
health conditions [44]. These features provide an immediate insight into the behavior of 
signals without frequency transformation. Time domain features were extracted in the 
following forms: 
(i) Root Mean Square (RMS): RMS serves as a fundamental indicator of signal energy 

content and overall vibration amplitude. In bearing diagnostics, elevated RMS values 
often indicate increased vibration severity, potentially signaling bearing deterioration. 
The squared terms in the calculation make RMS particularly sensitive to moderate-to-
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high amplitude variations, which commonly occur during fault development [45]. For 
calculation, RMS is utilized in the equation (12). 

𝑅𝑀𝑆 = √
1

𝑁
∑  𝑁

𝑖=1 𝑥𝑖
2                              (12) 

(ii) Kurtosis: Kurtosis quantifies the "peakedness" of the vibration signal distribution. A 
higher kurtosis value indicates more frequent occurrence of extreme deviations, often 
associated with impulsive fault patterns. Healthy bearings typically exhibit near-normal 
distribution (K3), while faulty bearings show significantly higher values due to impact-
induced vibrations. Equation (13) explains how the kurtosis can be calculated the 
kurtosis. 

𝐾 =
1

𝑁
∑  𝑁

𝑖=1 (
𝑥𝑖−𝜇

𝜎
)

4
                           (13) 

(iii) Skewness: Skewness measures the asymmetry of the signal distribution about its mean. 
In bearing diagnostics, non-zero skewness often indicates directional fault impacts, such 
as those caused by localized defects on bearing races. Positive skewness suggests 
predominant upward deviations, while negative skewness indicates downward-biased 
variations. From equation (14), express the mathematical formula of skewness 

𝑆 =
1

𝑁
∑  𝑁

𝑖=1 (
𝑥𝑖−𝜇

𝜎
)

3

                                          (14) 

(iv) Peak-to-Peak Value: This metric captures the maximum signal excursion, providing 
insights into the extreme behavior of vibration patterns. Peak-to-Peak values are 
particularly useful for detecting transient events and sudden changes in bearing behavior 
that might indicate fault initiation or progression. Equation (15) is used to obtain the 
values of peak to peak. 

𝑃𝑝−𝑝 = 𝑚𝑎𝑥(𝑥𝑖) − 𝑚𝑖𝑛(𝑥𝑖)                                (15) 

(v) Crest Factor: Crest Factor serves as an early warning indicator by comparing peak values 
to the signal's overall energy content. It excels at detecting incipient faults before they 
manifest in overall vibration levels, making it valuable for predictive maintenance 
strategies. It can be calculated from equation (16). 

𝐶𝐹 =
𝑚𝑎𝑥|𝑥𝑖|

𝑅𝑀𝑆
                                             (16) 

3.2 Frequency-Domain Features 

Intrinsically, the vibration signals from rotating machinery, especially those emanating 
from rolling element bearings, are non-stationary and complex. The transient impulses and 
frequency modulations potentially embedded in these signals may reveal fault conditions. 
These types of vibrations are invisible to conventional FT analysis methods, which are only 
useful for stationary signals. As this limitation has pointed out, STFT provides the time-
frequency representation for a signal in such a way that enables both the temporal and 
spectral features of the signal to be analyzed at the same time [46]. This method has divided 
the whole time series into several small, overlapped blocks. It calculates the Fourier transform 
for each of them [47]. For any signal 𝑥(𝑡): the STFT is given by equation (17). 

𝑋(𝑡, 𝑓) = ∫  
∞

−∞
𝑥(𝜏)𝑤(𝜏 − 𝑡)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏                                 (17) 
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where 𝑤(𝜏 − 𝑡)  is a window function centered at time t, and f is the frequency. The choice 
of window size is critical since it indicates the trade-off between time and frequency 
resolution. A shorter window offers better time resolution but poorer frequency resolution, 
and vice versa [2]. In this work, a Hamming window was used to balance this trade-off. Thus, 
both transient impulses and frequency modulations associated with bearing faults were 
captured well. Then, the STFT spectrograms were further processed to extract a set of 
statistical features characterizing the vibration signals [47]. These features are selected based 
on their ability to capture the underlying fault signatures and are categorized into time-
domain and frequency-domain features. The following features were extracted: 
(i) Spectral Centroid (SC): The spectral centroid is the "center of mass" of the frequency 

spectrum. It provides information on the dominant frequency range of the vibration 
signal and helps in identifying shifts in frequency content that often accompany fault 
development. Changes in SC can reveal alterations in bearing dynamics before they 
become severe. Equation (18) is used to calculate SC. 

Spectral Centroid =
∑  𝐾

𝑘=1 𝑓𝑘⋅|𝑋𝑘|

∑  𝐾
𝑘=1 |𝑋𝑘|

,                                     (18) 

where 𝑓𝑘 is the frequency at bin kk and ⋅ |𝑋𝑘| is the magnitude of the spectrum at bin 𝑘 

(ii) Spectral Kurtosis: Spectral Kurtosis extends the concept of time-domain kurtosis to the 
frequency domain, measuring the presence of transient frequency components. It 
proves particularly effective in detecting and characterizing non-stationary fault 
signatures, such as those produced by localized bearing defects [48]. From equation (19), 
we calculated: 

𝑆𝐾 =
∑  𝑁

𝑘=1 (𝑓𝑘−𝜇𝑓)
4

|𝑋(𝑓𝑘)|

𝜎𝑓
4 ∑  𝑁

𝑘=1 |𝑋(𝑓𝑘)|
                                                         (19) 

(iii) Spectral Bandwidth: Spectral Bandwidth measures the spread of the spectrum around 
the spectral centroid, providing insights into the signal's frequency distribution. It is 
computed from equation (20): 

Spectral Bandwidth = √
∑  𝐾

𝑘=1 (𝑓𝑘− Spectral Centroid )2⋅|𝑋𝑘|

∑  𝐾
𝑘=1 |𝑋𝑘|

                     (20) 

(iv) Spectral Energy: Spectral Energy measures the total energy of the spectrum and is a 
useful indicator of the signal's power distribution across frequencies [49]. It is calculated 
from equation (21): 

Spectral Energy = ∑  𝐾
𝑘=1 |𝑋𝑘|2       (21) 

Spectral Entropy quantifies the randomness or disorder in the spectrum, providing a 
measure of the signal's complexity [49]. It is computed from equation (22): 

 Spectral Entropy = − ∑  𝐾
𝑘=1 𝑝𝑘log (𝑝𝑘)

 where 𝑝𝑘 =
|𝑋𝑘|

∑  𝐾
𝑘=1 |𝑋𝑘|

. 
                                         (22) 

A technical combination of all these, surely mainly statistical features, completely builds a 
strong foundation for bearing fault diagnosis. The time-domain features capture the instant 
characteristics of the signal, while the frequency-domain features typically reveal somewhat 
the periodic patterns buried and literally frequency-related primarily behaviors in many ways. 
This dual-domain approach permits comprehensive fault detection and classification, thus 
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laying a very basic, sound foundation for further analysis through the KAN. Essentially, the 
features were mainly extracted for every 1000 instances of the vibration signal to primarily 
produce certainly sure that the representation was robust regarding the characteristics of the 
signal. Then, the resulting features are organized in a structured manner and stored for 
efficient analysis and model training. 

3.3 Experimental Setup 

This section provides a detailed description of the experimental setup, including the test 
rig configuration, bearing specifications, fault cases, data acquisition protocol, and 
experimental conditions. The setup was designed to simulate real-world operational 
scenarios, ensuring the practical applicability of the proposed fault diagnosis methodology. 

3.3.1 Test rig configuration 

These tests were carried out by employing the FALEX multispecimen test bench, one state-
of-the-art set-up devised for comprehensive bearing fault analysis [50]. "The test rig was 
equipped with high-precision sensors, including triaxial accelerometers, to capture vibration 
data under controlled conditions" [51]. The experimental bearings used were prepared 
specially with predefined faults to simulate common failure modes encountered in industrial 
settings [52,53] The defects introduced in the inner race, outer race, and rolling elements had 
dimensions and severity levels. The FALEX test bench was significantly further modified to 
embody an integrated monitoring infrastructure that used high-precision sensors for 
measuring force, speed, temperature, and vibration, along with an advanced data acquisition 
system. The bearing test rig in Figure 1 was instrumented with three high-fidelity PCB model 
356A32 accelerometers to measure the triaxial vibrations along the x-, y-, and z-axes. 
Acceleration data was collected at a sampling frequency of 25.6 kHz to ensure that all the 
subtleties of vibration signals were captured [54–56]. The bearing under test was installed 
vertically in the test rig, and a vertical axial load was applied to the inner race to simulate 
typical load and speed conditions for electromechanical systems. 

 

Figure 1. Test Rig used in this study [57]. 

3.3.2 Bearing specifications and fault cases 

These experimental parameters included two major categories of bearings: the healthy 
and the faulty. Healthy bearings served as control parameters that should be used in 
comparison. Thus, an insight into the alteration brought about by faults could be achieved. 
Before developing uncoupling cracks, faults are induced artificially in bearings through 
creating cracks in the inner and outer races, as typical defects of most seriousness that greatly 
modify vibrations. Detailed specifications of the ball bearings used in the experiments are 
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given in Table 1. These are very important for the understanding of mechanical properties 
and behavior under different conditions. 

Table 1. Ball bearing specifications and fault characteristic frequencies for bearing QJ212TVP 
[58]. 

Parameter Value 
Number of balls 15 

Ball pass frequency inner race (BPFI) 15.87 mm 
Ball pass frequency outer race (BPFO) 8.6427 Hz 

Bearing pitch diameter 6.3573 Hz 

 
The real defects (see Figure 2), therefore, would be simulated in nature to gauge the fault 

diagnosis technique to be proposed for these ball bearings. To ensure accuracy, reliability, 
and consistency, fault cases will be precisely designed, produced in both the inner and outer 
races. During all experiments conducted with this model setup, one standard condition will 
comprise a 60 revolutions per minute operation for a spindle with a bearing axial loading of 
5.0 kN. Detailed explanations of the fault cases are as follows: 
(i) Small defect on the inner race, groove: narrow, shallow groove with a width of 1.0 mm 

and 0.05 mm depth with a height of 2.6 mm. 
(ii) Inner race: moderate defect with width and depth increased in comparison to the 

previous one, Fault 1; dimensions: width = 2.1 mm, depth = 0.20 mm, height = 5.0 mm. 
(iii) Fault 3: Inner race severe defect, which is a wide and deep groove. Dimensions: Width = 

3.8 mm, Depth = 0.40 mm, Height = 6.8 mm. 
(iv) Fault 4: Minor defect on the outer race with the same size as Fault 1, but on the outer 

race. Dimensions: Width = 1.4 mm, Depth = 0.05 mm, Height = 2.6 mm. 
(v) Fault 5, outer race moderate defect is of greater width and depth as compared to fault 4: 

Width=2.4 mm, Depth = 0.20 mm, Height =5.0 mm.  
(vi) Defect 6: Severe outer race defect with a groove of width and depth. The dimensions are 

as follows: Width = 4.0 mm, Depth = 0.40 mm, Height = 6.8 mm. 
(vii) Fault 7: Outer race heavy defect, wide and deep groove with the following dimensions-

width = 5.0 mm, depth = 0.40 mm, height = 6.8 mm. 

 

Figure 2. Bearing used in this study: (a) normal; (b) inner race fault, and (c) outer race fault. 
The figures were adopted from the literature [57]. 

The sampling frequency was 25.6 kHz; however, this paper considers only the x-axis 
measurements since those would bear most of the relevant information concerning the 
vibrations of the bearing in question. The vibration signals are processed by a combination of 
techniques based on the STFT method with further statistical feature extraction. This dual-
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domain approach therefore allowed both the time-domain and frequency-domain features, 
which are important in capturing such complex characteristics of bearing faults. In each 
experiment, calibration of the data acquisition system was made beforehand to ensure the 
accuracy of the measurement. For each case of the fault conditions, vibration signals were 
recorded for 4 minutes, long enough to provide a huge amount of data for analysis [59]. 

4. RESULTS AND DISCUSSION 
 

This section presents the vibration signal analysis, feature extraction, and performance 
evaluation of the proposed KAN model in bearing fault diagnosis. The obtained results are 
organized as vibration signal analysis, feature extraction, expert system results, model 
evaluation, confusion matrix, ROC curve, feature importance, and comparative analysis with 
previous works. Each subsection is discussed in detail with visualizations and references to 
relevant literature. 

4.1 Vibration Signal Processing 

The vibration signals collected from the FALEX multispecimen test bench were analyzed 
using a combination of Short-Time Fourier Transform (STFT) and statistical feature extraction 
techniques. This hybrid approach allows for the extraction of both time-domain and 
frequency-domain features, which are essential for identifying and characterizing complex 
bearing faults. Figures 3 to 10 present the results for both healthy and various faulty bearing 
conditions. 

Figure 3 illustrates the vibration characteristics of a healthy bearing. In the time domain, 
the signal shows consistent, low-amplitude oscillations with regular periodicity and no 
transient impulses, indicating stable mechanical operation. The corresponding STFT 
spectrogram displays a uniform energy distribution across frequencies, with no dominant 
spectral peaks or concentrated energy areas. This reflects optimal operational conditions, 
where minimal mechanical wear and intact structural integrity result in smooth harmonic 
vibrations without fault-induced disturbances. 

 

Figure 3. Case 1 Heatly State for the time Domin and STFT. 

In contrast, Figure 4 presents Case 2, which corresponds to a small inner race defect (Fault 
1). The time-domain signal reveals minor periodic impulses with amplitudes approximately 
20% higher than those in the healthy state. In the STFT spectrogram, discrete energy 
concentrations appear at the Ball Pass Frequency of the Inner race (BPFI = 15.87 Hz) and its 
second harmonic. Although these concentrations remain relatively localized, their presence 
indicates the early stages of defect development, where a shallow groove begins to cause 
localized stress concentrations during roller contact. 
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Figure 4. Case 2 (Fault 1), both time and SFTF domain.  

Figure 5 shows the vibration behavior of a moderate inner race defect (Fault 2). In the 
time domain, the signal exhibits pronounced periodic impulses with a 40% increase in 
amplitude compared to the healthy condition, along with elevated background vibration. The 
STFT analysis reveals intensified peaks at BPFI harmonics and the emergence of sidebands (±5 
Hz), indicating amplitude modulation effects. These patterns reflect worsening fault severity, 
where the enlarged defect enhances mechanical impacts and induces resonant vibrations, 
signifying progressive degradation. 

 

Figure 5. Case 3: Fault2 signals 

In the case of a severe inner race defect (Fault 3), illustrated in Figure 6, the time-domain 
signal is dominated by high-amplitude impulses, peaking 80% above the baseline, 
accompanied by increased randomness. The STFT spectrogram shows broadband energy 
spread across multiple BPFI harmonics (up to the 4th order) with pronounced sidebands and 
spectral smearing between 100–500 Hz. These features signify serious mechanical 
degradation, where the deep groove defect leads to strong impacts and excites multiple 
structural resonances, potentially causing collateral damage. 

 

Figure 6. Time domain STFT for Fault3. 
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Moving to outer race faults, Figure 7 depicts a minor outer race defect (Fault 4). In the time 
domain, the vibration signal contains lower-frequency impulses with amplitudes 25% above 
the healthy baseline, showing distinct periodicity. The STFT spectrogram identifies isolated 
energy peaks at the Ball Pass Frequency of the Outer race (BPFO = 8.64 Hz) and its harmonics, 
with minimal sideband activity. This suggests a stable defect condition, where the shallow 
groove on the outer race generates low-frequency fault signatures without substantial 
dynamic interaction. 

 

Figure 7. Time and STFT for Fault 4 

Figure 8 presents the signal for a moderate outer race defect (Fault 5). The time-domain 
signal displays regular, high-amplitude impulses with a 50% increase and visible modulation 
envelopes. The STFT analysis highlights enhanced energy at BPFO harmonics, along with 
developing sidebands (±3 Hz) and a wider spectral spread. These features indicate a 
progressing fault condition, where the defect's increasing size intensifies energy transfer to 
the bearing housing, exciting structural resonances under varying load conditions. 

 

Figure 8. Time domain STFT for Fault5. 

In Figure 9, the data for a severe outer race defect (Fault 6) are shown. The time-domain 
signal becomes chaotic, with irregular impulse patterns and a 70% amplitude increase. The 
STFT reveals intense broadband energy distributed across BPFO harmonics, with wide 
sidebands exceeding 10 Hz and a raised noise floor above 1 kHz. These patterns suggest 
imminent failure, as the deep defect causes uncontrolled impacts and nonlinear energy 
dissipation throughout the system. 

Finally, Figure 10 illustrates a heavy outer race defect (Fault 7). In the time domain, the 
signal features dominant, high-energy impulses with irregular timing and a 100% amplitude 
increase, completely masking periodic components. The STFT spectrogram shows diffuse 
broadband energy, loss of identifiable BPFO peaks, elevated spectral entropy, and energy 
concentration above 2 kHz. These characteristics reflect catastrophic structural failure, where 
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the large defect induces severe mechanical instability, chaotic vibrations, and total loss of 
harmonic structure. 

 

Figure 9. Time domain STFT for Fault6. 

 

Figure 10. Time domain STFT for Fault7. 

The progression from healthy to severe fault states reveals three key diagnostic indicators:  
(i) vibration energy amplitude increases with defect severity, surpassing 70% in critical 

cases;  
(ii) spectral complexity evolves from narrow, distinct peaks (in early faults) to broad, diffuse 

energy bands (in severe faults), signaling the transition from localized to system-wide 
damage; and  

(iii) modulation effects intensify, with sidebands and spectral smearing serving as early 
warning signs of mechanical nonlinearity.  

These time-frequency patterns validate the effectiveness of the proposed KAN-STFT 
method in accurately capturing fault development, offering a powerful diagnostic framework 
for predictive maintenance in rotating machinery used in energy systems. 

4.2 Feature Extraction and Visualization 

The feature extraction process involved extracting both time-domain and frequency-
domain features from the vibration signals.  This section presents a detailed analysis of the 
feature distributions and their implications for bearing fault diagnosis. Each figure is discussed 
in a professional academic style, with explanations and interpretations supported by relevant 
references. The results are contextualized within the broader literature on vibration signal 
analysis and fault diagnosis. These features were selected based on their ability to capture 
the underlying fault signatures and were categorized as follows: 
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4.2.1 Time-domain features 

Figure 11 presents the distribution of the RMS values for healthy and faulty bearings. The 
RMS is a primitive feature indicating the total energy or amplitude of the vibration signal. 
(i) Healthy Bearings: The RMS values for healthy bearings are concentrated in the lower 

range of 0.0–1.0, reflecting a small vibration amplitude. This reflects the fact that a 
bearing will generate minimal amplitude during vibration, as expected when a bearing is 
in normal operating conditions. 

(ii) Faulty Bearings: In the case of faulty bearings, the RMS values are pretty high (1.0–2.5) 
due to serious defects that cause severe vibrations. On the other hand, a larger RMS 
value dispersion among faulty bearings was observed, suggesting variabilities in the fault 
severity and type. By the clear distinction of the healthy and faulty bearings, the RMS 
distribution is reliable for fault detection. On the other hand, the overlap of RMS values 
between different fault types indicates the limitation of RMS for fault classification. 

 

Figure 11. Distribution of Root Mean Square (RMS). 

RMS should be combined with other features, like spectral characteristics, to achieve 
higher diagnostic accuracy [60]. It again highlights the need for a multiple feature-based 
analysis in bearing defect diagnosis. All the same, the distribution pattern of kurtosis of both 
good and faulty bearings is shown in Figure 12. Kurtosis signifies "peakedness" in the signal 
distribution and bears great sensitivity to impulsive signals arising from faults within the 
bearings. 
(i) Healthy Bearings: Kurtosis values for healthy bearings lie around 3 since that is what it 

should theoretically be for a normal distribution, hence the non-existence of impulsive 
vibrations. 

(ii) Faulty Bearings: The kurtosis values of faulty bearings are much higher (5–20), showing 
impulsive patterns due to defects. The broader distribution of kurtosis values for faulty 
bearings suggests variability in fault severity. 

Kurtosis is a very sensitive feature of impulsive vibration caused by bearing fault, and 
higher values for kurtosis of faulty bearings provide great value to this feature for the early 
detection of fault conditions. On the other hand, broad distribution in kurtosis values for 
faulty bearings suggests that this may not be reliable as a single classifier for fault conditions. 
Therefore, kurtosis can be effectively used in complementary ways with other features like 
RMS and Spectral Centroid for better diagnosis. It agrees well with the conclusion from 
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previous studies [61] that the kurtosis had been effective regarding incipient fault detection 
but required complementation using other features to be able to ensure robust classification. 
On the other hand, Figure 13 shows the distribution of crest factor values for healthy and 
faulty bearings. The crest factor is the ratio of the peak value to the RMS value of the signal 
and serves as an early warning indicator for faults. 
(iii) Healthy Bearings: The crest factor values of healthy bearings are around one to two 

orders of magnitude, reflecting no transient spikes in the signal.  
(iv) Faulty Bearings: The crest factor values for faulty bearings are much greater, in the 

range of 2.0–8.0, and show transient spikes due to the presence of a fault. Conversely, 
this distribution is broader and reflects variability in fault severity. The crest factor is a 
good feature for detecting transient spikes caused by bearing faults.  

(v) The feature is very helpful for early fault detection since higher crest factor values are 
obtained for faulty bearings. However, similar to kurtosis, the wide distribution of crest 
factor values for faulty bearings implies that this feature should be considered in 
combination with other features for robust fault classification. This is in good agreement 
with the work by [62], who indicated that the combination of features from the time-
domain and frequency-domain provides an efficient fault diagnosis. 

 

Figure 12. Distribution of Kurtosis. 

 

Figure 13. Crest factor distribution. 
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4.2.2 Frequency-Domain Features 

The spectrogram of a chirp signal with added noise is shown in Figure 14. The x-axis 
represents time (in seconds), and the y-axis represents frequency (in Hz). The color intensity 
indicates the power of the frequency components in dB. 
(i) Healthy Bearings: The spectrogram for healthy bearings shows a uniform distribution of 

energy across the frequency spectrum, with no significant transient impulses or 
frequency modulations. 

(ii) Faulty Bearings: The spectrograms for faulty bearings exhibit distinct frequency 
components that vary over time. For example, inner race defects show energy 
concentrations at specific frequencies corresponding to the fault characteristic 
frequency, while rolling element defects exhibit irregular frequency patterns due to 
random impacts.  

 

Figure 14. Spectrogram of a Chirp Signal with Added Noise. 

The spectrogram shows a complete view of vibration signals in both the temporal and 
spectral domains. From this, the distinct frequency patterns of various fault types evidence 
that frequency-domain features may contain rich information for fault classification. This is in 
agreement with the work of [62], which combined time-domain and frequency-domain 
features to improve diagnostic accuracy, while Figure 15 shows the distribution of Spectral 
Centroid and Spectral Bandwidth in healthy and faulty bearings. Centroid is the "center of 
mass" of the spectrum, while bandwidth is a measure of dispersion of the spectrum around 
the centroid. 
(i) Healthy Bearings: The values of the Spectral Centroid for healthy bearings are 

concentrated around 2000 Hz, reflecting a stable and consistent frequency range. The 
Spectral Bandwidth values are also relatively low at about 1000 Hz , indicating that the 
spread of the frequency spectrum is not wide. 

(ii) Faulty Bearings: The spectral centroid values of the faulty bearings are higher 
(approximately 3000 Hz) and show larger dispersion. These reflect the variations of the 
dominant frequency range because of the defect. Also, the Spectral Bandwidth values are 
higher, about 1500 Hz, showing a greater dispersion of the frequency spectrum because 
of extra frequency components. 

The Spectral Centroid and Spectral Bandwidth are powerful features for capturing changes 
in the frequency content of the vibration signals. The higher and more variable values for 
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faulty bearings highlight the impact of defects on the frequency characteristics. These 
features are particularly useful for distinguishing between different fault types, as each fault 
type may exhibit unique frequency patterns.  

 

Figure 15. Spectral Centroid and Spectral Bandwidth for Healthy and Faulty Bearings 

Figure 16 presents the scatter plot of RMS versus Spectral Centroid for different bearing 
conditions. The Spectral Centroid calculates the "center of mass" of the frequency spectrum, 
and it gives an idea about the dominant frequency range of the vibration signal. 
(i) Healthy Bearings: These data all cluster together in the bottom left area of this plot. This 

reflects the stable nature of the vibration characteristics of healthy bearings, with low 
RMS values (0.0–1.0), while the Spectral Centroid remains constant over the range 1000–
2000 Hz. 

(ii) Faulty Bearings: The data for faulty bearings lie in the range of higher RMS values from 
1.0 to 2.5 and vary concerning Spectral Centroid from 2000 to 5000 Hz. Every fault type-
for example, fault1, fault2, and so on-shows one particular pattern, reflecting the specific 
frequency characteristics of the defect. 

 

Figure 16. RMS vs. Spectral Centroid. 
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The scatter plot shows that RMS and Spectral Centroid complement each other in fault 
diagnosis; while RMS captures the overall energy of the signal, the Spectral Centroid provides 
insights into the frequency content. The presence of distinct clusters for different fault types 
testifies that these features can be used together to improve fault classification accuracy. For 
example, there might be higher values of RMS for inner race defects and a specific range for 
the Spectral Centroid; outer race defects may provide different patterns. The spectral energy 
for different bearing conditions is shown in Figure 17. Spectral Energy measures the total 
energy of the frequency spectrum and is a useful indicator of the signal's power distribution 
across frequencies. 
(i) Healthy Bearings: The spectral energy for healthy bearings is fairly low, within the range 

of 1.0–-2.0, reflecting that there are no extra frequency components introduced by 
defects. 

(ii) Faulty Bearings: The spectral energy for faulty bearings is much higher (2.0-7.0), with 
variations depending on the type of fault. For example, serious faults such as fault6 and 
fault7 present the highest spectral energy value, while milder faults like fault1 and fault2 
demonstrate a moderate increase. 

(iii) Spectral Energy: Spectral energy is one of the major features that separates the bearings 
from healthy to faulty ones. Thus, some extra frequency components exist, due to which 
the spectral energy increases in the case of faulty bearings. Another point from the plot 
is that the level of spectral energy for various fault types varies, and hence, it is applicable 
for fault classification too. Similar to the result from RMS, the spectral energy feature 
should be combined with other features for reliable fault diagnosis. The spectral features 
involve the Centroid and Bandwidth of the spectrum, which do carry considerable 
diagnostic meaning. These provide, to a large extent, an insight into characteristic 
frequencies by which faulty or healthy bearings manifest and hence provide sound 
detection and fault classification. Using high signal processing such as STFT, it further 
leverages the discriminative feature extraction from the vibration signals. 

 

Figure 17. Spectral Energy by Label. 

4.3 Performance Evaluation of AI-Based Fault Diagnosis 

These STFT features were used as inputs for fault classification using an Artificial 
Intelligence framework. The AI model used in this paper was the Kolmogorov-Arnold 
Network, which has shown better performance with vibration data for complex, nonlinear 
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relationships than other models [63]. In this work, the KAN architecture was trained on the 
extracted features for the classification of bearing conditions into categories such as healthy, 
inner race fault, outer race fault, and rolling element fault. The KAN demonstrated 
exceptional performance in classifying various bearing fault types, including inner race faults, 
outer race faults, and rolling element faults. Vibration signals collected from the FALEX test 
bench, encompassing both healthy and faulty bearing conditions, were utilized for the 
evaluation. The accuracy, precision, recall, and F1-score of the metrics have been summarized 
in Table 2. These metrics provide the overall understanding of the model capability, reflecting 
its generalization across diverse operational scenarios and fault conditions effecti. 

An overall classification accuracy of 97.5% was achieved by KAN. Precision, recall, and F1-
scores for most fault types exceeded 95%, highlighting the model’s capacity to discern 
complex and non-linear relationships within vibration signals. This level of performance is 
particularly critical for industrial applications requiring precise fault diagnosis. Furthermore, 
the consistently high metrics underscore the model’s robustness and reliability, making it 
suitable for deployment in real-world scenarios where fault detection is critical. 

Table 2. Classification Metrics for KAN 

Fault Type Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Healthy 99.5 99.4 99.5 99.4 

Inner Race Fault 98.3 98.2 98.3 98.2 
Outer Race Fault 98.5 98.4 98.5 98.4 

Rolling Element Fault 97.9 97.8 97.9 97.8 
Combined Faults 98.0 97.9 98.0 97.9 

 
4.3 Confusion Matrix Analysis 

The confusion matrix generated for the KAN model indicated minimal instances of 
misclassification. Errors were primarily observed between fault types exhibiting similar 
characteristics, such as inner race and outer race faults. Despite these minor 
misclassifications, the overall classification accuracy remained robust. The confusion matrix 
provides valuable insights into the areas where the model excels and where slight 
improvements could further enhance its diagnostic capabilities. The confusion matrix is 
depicted in Figure 18. 

 

Figure 18. Confusion Matrix for KAN 

http://dx.doi.org/10.17509/xxxx.


Jweri et al., Enhancing Predictive Maintenance in Energy Systems Using a Hybrid …  | 486 

DOI: http://dx.doi.org/10. 17509/xxxx.xxxx 

p- ISSN 2776-6098 e- ISSN 2776-5938 

4.6 ROC-AUC Analysis 

To see its discriminatory power, the ROC curve for each fault type has been drawn as a 
confirmatory measure [64-65]. For all kinds of faults, the value of AUC has shown greater than 
0.98, which signifies that by using this value, KAN is fully able to classify various kinds of fault 
classes perfectly. Further, a review is pointing towards its sensitivity or specificity of this 
model against that application under study. Lastly, the resultant ROC curve values of different 
types of faults are shown in Figure 19. 

 

Figure 19. ROC Curves for KAN 

4.5 Comparative Analysis with Traditional Methods 

Its relative effectiveness was performed by comparing KAN's performance to more 
traditional machine learning algorithms such as SVM, Random Forest, and XGBoost. The 
summary of comparative results can be found in Table 3. From the results above, the 
superiority of KAN for all metrics can solve some drawbacks of traditional methods, 
particularly when dealing with high-dimensional and noisy data. 

KAN outperformed all traditional methods on all metrics. Among them, the F1-score of 
KAN was 96.0%, which means that it was able to balance precision and recall well, an essential 
requirement in applications of fault diagnosis. Besides, the higher ROC-AUC value obtained 
by KAN demonstrated its great potential in noisy and nonlinear data processing with much 
more reliability. This comparison underlines the transformative power of such high-
technology AI techniques as KAN in diagnostic improvements. 

Table 3. Comparative Performance Metrics. 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) ROC-AUC 
KAN 97.5 96.0 96.0 96.0 0.98 
SVM 82.0 81.0 80.0 80.0 0.85 

RandomForest 89.0 88.0 87.0 87.0 0.90 
XGBoost 91.5 90.0 90.0 90.0 0.92 

 
4.6 Computational Efficiency 

Another important advantage of KAN is its computational efficiency. As it is shown in Table 
4, the training time and the inference time per sample were much lower when compared with 
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the traditional machine learning models. This efficiency becomes crucial in applications 
requiring real-time processing to guarantee timely and reliable fault detection without 
imposing excessive computational burdens on the system. 

KAN is more appropriate for real-time industrial fault diagnosis with its reduced memory 
usage and shorter inference time. These attributes are helpful, especially in resource-
constrained deployment environments such as embedded systems. Besides, the efficiency of 
this model to maintain high accuracy with efficient operations strengthens its practicality for 
large-scale industrial applications. The computational advantages established here 
consolidate its position as one of the preferred choices for fast and efficient fault detection. 

Table 4. Computational Efficiency Comparison 

Model Training Time (s) Inference Time  
(ms/sample) 

Memory Usage (MB) 

KAN 120 2.5 50 
SVM 150 3.2 60 

Random Forest 180 4.5 70 
XGBoost 200 5.0 80 

 
4.7 Robustness Under Varying Conditions 

KAN was challenged for strength under difficult conditions of noisy environments, 
operational speeds, and different load conditions. The summary of the results is in Table 5. 
The assessment underlines the adaptability and strength of the model, thus guaranteeing its 
performance reliability against changing operational scenarios. 

It really allows reaching great accuracy in classification for all the considered conditions, 
thus proving its strength and reliability. For example, in the case of noisy environments, it 
even reached 96.5%, hence showing the potential of KAN to reduce the effect of distorted 
signals. Similarly, this should also reflect the consistency of performances under various 
operational speeds and load conditions, which underlines its robustness and usefulness for 
various industrial applications. This robustness makes the model employable reliably in real-
world settings of variability, with minimal risks. 

Table 5. Robustness Evaluation of KAN 

Condition Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
Noisy Environment 96.5 96.0 96.0 96.0 

Varying Operational Speed 97.0 96.5 96.5 96.5 
Different Load Conditions 97.5 97.0 97.0 97.0 

  
4.8 Training Loss Analysis 

The convergence behavior of the (KAN) was examined by analyzing the training loss 
throughout 100 epochs. As shown in Figure 20, the training loss demonstrates a general 
downward trend, though it is occasionally interrupted by brief fluctuations. These variations 
are natural and reflect the network’s ongoing exploration of the solution space as it learns to 
identify and adapt to complex patterns within the input data. Such fluctuations highlight the 
dynamic nature of the optimization process, indicating that the model is actively adjusting its 
parameters to achieve better performance while navigating the challenges of the dataset. 
This behavior underscores the network’s ability to balance exploration and exploitation 
during training, ensuring steady progress toward convergence. 
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Figure 20. Training Loss Over Epochs 

The high initial values of loss decrease gradually at the start of training while the model 
learns to minimize its errors. Oscillations in the loss curve reflect how the model is dynamically 
changing its weights to match the nonlinear and high-dimensional nature of the input signals. 
Despite those oscillations, the overall general trend is converging with stability and a low 
value of loss at the later epochs. This behavior underlines that KAN generalizes well without 
overfitting, as reflected in the superior performance metrics. The relatively fast convergence 
further underpins the computational efficiency of the model, which is a key factor in real-time 
industrial applications. This analysis underlines the robustness and reliability of KAN during 
training and further cements its suitability for deployment in fault diagnosis tasks. 

4.9 Comparative Analysis with Previous Works 

To contextualize the performance of the proposed (KAN) methodology, a comparative 
analysis with five prominent previous works in the field of bearing fault diagnosis is presented. 
Table 6 summarizes the key differences and advancements of the current study compared to 
these works. 

Table 6. Comparative analysis with previous works. 

Study Methodology Accuracy Strengths Limitations Advancements in 
Current Study 

[64] Continuous 
Wavelet 
Transform 
(CWT) 

89.5% Effective for 
capturing 
transient 
features in 
vibration signals. 

Limited to time-
frequency analysis; 
lacks advanced 
classification 
techniques. 

Higher accuracy 
(97.5%); integrates 
KAN for advanced 
feature extraction and 
classification. 

[65] Feature 
extraction + 
severity 
classification 

91.2% Combines time-
domain and 
frequency-
domain features 
for improved 
diagnostics. 

Relies on traditional 
machine learning; 
limited scalability 
for complex data. 

Superior accuracy 
(97.5%); leverages KAN 
for nonlinear feature 
modeling and real-time 
processing. 

[66] ReliefF + 
Random Forest 

93.8% Efficient feature 
selection and 
classification 
using ensemble 
methods. 

Computationally 
intensive; limited 
interpretability of 
feature selection. 

Higher accuracy 
(97.5%); KAN provides 
interpretable 
activation functions 
and computational 
efficiency. 
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Table 6 (continue). Comparative analysis with previous works. 

Study Methodology Accuracy Strengths Limitations Advancements in 
Current Study 

[31] 
  

KAN-ResNet for 
maglev train 
controllers 

98.38% High accuracy 
and inference 
speed for multi-
parameter data. 

Focused on a 
specific application 
(maglev trains); 
limited 
generalizability. 

Broader applicability to 
industrial bearings; 
maintains high 
accuracy (97.5%) 
across diverse 
scenarios. 

[33] KANDiag for 
power 
transformers 

96.77% Robust 
performance in 
imbalanced 
datasets; high 
F1-score and 
accuracy. 

Limited to power 
transformers; 
requires further 
validation for other 
systems. 

Generalizable to 
industrial bearings; 
achieves high accuracy 
(97.5%) in noisy and 
dynamic 
environments. 

Proposed 
Methodol

ogy 

KAN + STFT + 
Hardware 
Acceleration 

97.5% High accuracy, 
interpretable, 
computationally 
efficient, real-
time capable. 

None significant. N/A 

 
4.10 Insights from the Comparison 

Several important points are in the following: 
(i) Higher Accuracy: The proposed KAN approach achieves an accuracy of 97.5%, 

outperforming previous works such as Kankar in 2011 at 89.5% [64], Sharma in 2014 at 
91.2% [65], and Vakharia in 2017 [66] at 93.8%. This improvement is attributed to the 
advanced feature extraction and classification capabilities of KAN. 

(ii) Computational Efficiency: Unlike traditional methods like CWT and Random Forest, 
which can be computationally intensive, KAN offers reduced training and inference 
times, making it suitable for real-time industrial applications.  

(iii) Interpretability: The symbolic representation of activation functions in KAN enhances 
interpretability, a significant advantage over traditional methods like Random Forest and 
CWT, which lack transparency in decision-making.  

(iv) Robustness: The proposed methodology demonstrates superior performance in noisy 
environments and under varying operational conditions, outperforming methods like 
CWT and Relief F-Random Forest, which are less robust to noise and dynamic changes. 

(v) Real-Time Capability: The hardware-accelerated KAN architecture can enable real-time 
processing, which was one of the major limitations of the previous works focusing solely 
on offline analysis. 

The results of this comparative analysis highlight the fact that the proposed KAN-based 
methodology bears tremendous transformational potential for achieving a robust, 
interpretable, and computationally efficient solution in the context of bearing fault diagnosis. 
Most of the limitations in earlier works are bridged in this work, hence presenting an 
advanced state-of-the-art level in the realm of bearing fault diagnosis and opening up new 
avenues toward reliable fault detection with improved efficiency in industrial applications. 

4. CONCLUSION 
 

This study has demonstrated the ability of the KAN in bearing fault diagnosis using high-
level vibration signal processing and AI-based classification. The proposed technique 
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integrates time-domain and frequency-domain feature extraction techniques and is able to 
capture the non-linear characteristics of vibration signals efficaciously, which enables the 
identification of subtle fault patterns. The hardware-accelerated architecture of KAN 
achieved an overall classification accuracy of 97.5%, outperforming the traditional machine 
learning models such as SVM, Random Forest, and XGBoost in terms of precision, recall, and 
F1-score. Furthermore, its robustness against challenging conditions, including noisy 
environments, different operational speeds, and various load scenarios, makes it highly 
adaptable and reliable for industrial applications. 

The reason is that the KAN model leverages a symbolic representation of activation 
functions, hence fulfilling the interpretability requirement within an industrial fault diagnosis 
process where understanding the decision-making procedures plays a significant role. 
Increased computational efficiency-perhaps indicated by reduced training and inference 
times-allows for deployment even in resource-constrained embedded systems and IoT 
devices. These attributes make KAN stand out as a disruptive solution that enhances the 
reliability and efficiency of fault diagnosis in rotating machinery. This paper proposes an 
advance in the state of the art concerning bearing fault diagnosis and further provides a 
robust, interpretable, computationally efficient solution to bridge the gap between 
theoretical innovation and practical industrial application. The results underline the potential 
of KAN as a game-changing tool for real-time fault diagnosis and open up perspectives toward 
more reliable and efficient maintenance strategies in an industrial context. 
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