Energy-Efficient Synthetic Method, X-Ray Diffraction Analysis and Thermal Decomposition of Cobalt (II) and Nickel (II) Schiff Base Complexes Derived from 2-Aminobenzothiazole

Salihu Sani, Ibrahim Tajo Siraj, Mukhtar Atiku Kurawa, Isa Baba Koki


A Schiff base was synthesized from the condensation reaction of 2-hydroxybenzaldehyde and 2-aminobenzothiazole via energy-efficient liquid-assisted mechanochemical synthesis (LAG). The Co (II) and Ni (II) complexes were also synthesized and characterized using IR, Solubility, TGA, PXRD, UV-Visible analysis, magnetic susceptibility measurement, conductivity measurement, and CHNS/O micro-analysis. In the IR analysis, the Schiff base spectrum revealed a prominent band at 1603 cm-1 (assigned to the azomethine v(C=N) stretching vibration), and the azomethine band shifted to 1621 and 1599 cm-1 in the Co (II) and Ni (II) complexes, respectively (indicating the formation of the expected complexes). In the TGA thermogram, Ni (II) and Cu (II) Schiff base complexes had decomposition temperatures of 184 and 181°C, respectively. The PXRD analysis revealed that the patterns of the ground mixture were different from the starting constituents, implying that the raw components were converted into the final product. The theoretical and experimental analytical data of C, H, and N for the Schiff base and complexes are in good agreement. The Schiff base ligand and its complexes were evaluated as agents for inhibiting the growth of pathogenic bacteria using the agar well diffusion method. According to antimicrobial activity studies, complexes exhibit stronger antibacterial activity than the Schiff base.


Azomethine; Complexes; Schiff Base; Solid-Solid reaction; Solvent-assisted

Full Text:



Aiyelabola, T. O., Ojo, I. A., Adebajo, A. C., Ogunlusi, G. O., Oyetunji, O., Akinkunmi, E. O., and Adeoye, A. O. (2012). Synthesis, characterization and antimicrobial activities of some metal (II) amino acids’ complexes. Advances in Biological Chemistry, 2(03), 268.

Ashraf, M. A., Mahmood, K., Wajid, A., Maah, M. J., and Yusoff, I. (2011). Synthesis, characterization and biological activity of Schiff bases. International Proceedings of Chemical, Biological and Environmental Engineering, 10, 1–7.

Bénéteau, V., Besson, T., Guillard, J., Léonce, S., and Pfeiffer, B. (1999). Synthesis and in vitro antitumour evaluation of benzothiazole-2-carbonitrile derivatives. European Journal of Medicinal Chemistry, 34(12), 1053–1060.

Bhowon, M. G., Wah, H. L. K., and Narain, R. (1998). Schiff base complexes of ruthenium (II) and their use as catalytic oxidants. Polyhedron, 18(3–4), 341–345.

Borisenko, V. E., Koll, A., Kolmakov, E. E., and Rjasnyi, A. G. (2006). Hydrogen bonds of 2-aminothiazoles in intermolecular complexes (1: 1 and 1: 2) with proton acceptors in solutions. Journal of Molecular Structure, 783(1–3), 101–115.

Bringmann, G., Dreyer, M., Faber, J. H., Dalsgaard, P. W., Sta erk, D., Jaroszewski, J. W., Ndangalasi, H., Mbago, F., Brun, R., and Christensen, S. B. (2004). Ancistrotanzanine c and related 5, 1 ‘-and 7, 3 ‘-coupled naphthylisoquinoline alkaloids from ancistrocladus tanzaniensis. Journal of Natural Products, 67(5), 743–748.

Carabineiro, S. A., Silva, L. C., Gomes, P. T., Pereira, L. C., Veiros, L. F., Pascu, S. I., Duarte, M. T., Namorado, S., and Henriques, R. T. (2007). Synthesis and characterization of tetrahedral and square planar bis (iminopyrrolyl) complexes of cobalt (II). Inorganic Chemistry, 46(17), 6880–6890.

Chakravarty, R., and Banerjee, P. C. (2012). Mechanism of cadmium binding on the cell wall of an acidophilic bacterium. Bioresource Technology, 108, 176–183.

Cinčić, D., and Kaitner, B. (2011). Schiff base derived from 2-hydroxy-1-naphthaldehyde and liquid-assisted mechanochemical synthesis of its isostructural Cu (II) and Co (II) complexes. CrystEngComm, 13(13), 4351–4357.

Cindrić, M., Uzelac, M., Cinčić, D., Halasz, I., Pavlović, G., Hrenar, T., Ćurić, M., and Kovačević, D. (2012). Three routes to nickel (II) salicylaldehyde 4-phenyl and 4-methylthiosemicarbazonato complexes: Mechanochemical, electrochemical and conventional approach. CrystEngComm, 14(9), 3039–3045.

Collinson, S. R., and Fenton, D. E. (1996). Metal complexes of bibracchial Schiff base macrocycles. Coordination Chemistry Reviews, 148, 19–40.

Etaiw, S. E. H., El-Aziz, D. M. A., El-Zaher, E. H. A., and Ali, E. A. (2011). Synthesis, spectral, antimicrobial and antitumor assessment of Schiff base derived from 2-aminobenzothiazole and its transition metal complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5), 1331–1337.

Fitzgerald, R. J., and Brubaker, G. R. (1969). Contact shift studies of the square-planar complex bis (dithioacetylacetonato) cobalt (II). Inorganic Chemistry, 8(11), 2265–2267.

Guo, Z., Xing, R., Liu, S., Zhong, Z., Ji, X., Wang, L., and Li, P. (2007). Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan. Carbohydrate Research, 342(10), 1329–1332.

Heo, Y., Song, Y. S., Kim, B. T., and Heo, J.-N. (2006). A highly regioselective synthesis of 2-aryl-6-chlorobenzothiazoles employing microwave-promoted Suzuki–Miyaura coupling reaction. Tetrahedron Letters, 47(18), 3091–3094.

James, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friščić, T., Grepioni, F., Harris, K. D., Hyett, G., and Jones, W. (2012). Mechanochemistry: Opportunities for new and cleaner synthesis. Chemical Society Reviews, 41(1), 413–447.

Jayanthi, K., Meena, R. P., Chithra, K., Kannan, S., Shanthi, W., Saravanan, R., Suresh, M., and Satheesh, D. (2017). Synthesis and microbial evaluation of copper (ii) complexes of schiff base ligand derived from 3-methoxysalicylaldehyde with semicarbazide and thiosemicarbazide. Journal of Pharmaceutical, Chemical and Biological Sciences, 5(3), 205–215.

Joseyphus, R. S., Dhanaraj, C. J., and Nair, M. S. (2006). Synthesis and characterization of some Schiff base transition metal complexes derived from vanillin and L (+) alanine. Transition Metal Chemistry, 31(6), 699–702.

Krishnankutty, K., Ummathur, B. M., and Babu, K. D. (2010). Benzothiazolylazo derivatives of some β-dicarbonyl compounds and their Cu (II), Ni (II) and Zn (II) complexes. Journal of the Serbian Chemical Society, 75(5), 639–648.

Kubaisi, A. A., and Ismail, K. Z. (1994). Nickel (II) and palladium (II) chelates of dehydroacetic acid Schiff bases derived from thiosemicarbazide and hydrazinecarbodithioate. Canadian Journal of Chemistry, 72(8), 1785–1788.

Nejo, A. A., Kolawole, G. A., and Nejo, A. O. (2010). Synthesis, characterization, antibacterial, and thermal studies of unsymmetrical Schiff-base complexes of cobalt (II). Journal of Coordination Chemistry, 63(24), 4398–4410.

Nishat, N., Hasnain, S., Ahmad, T., and Parveen, A. (2011). Synthesis, characterization, and biological evaluation of new polyester containing Schiff base metal complexes. Journal of Thermal Analysis and Calorimetry, 105(3), 969–979.

Piscitelli, F., Ballatore, C., and Smith III, A. B. (2010). Solid phase synthesis of 2-aminobenzothiazoles. Bioorganic and Medicinal Chemistry Letters, 20(2), 644–648.

Priya, N. P., Arunachalam, S., Manimaran, A., Muthupriya, D., and Jayabalakrishnan, C. (2009). Mononuclear Ru (III) Schiff base complexes: Synthesis, spectral, redox, catalytic and biological activity studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72(3), 670–676.

Sakıyan, I., Logoglu, E., Arslan, S., Sari, N., and Şakiyan, N. (2004). Antimicrobial activities of N-(2-hydroxy-1-naphthalidene)-amino acid (glycine, alanine, phenylalanine, histidine, tryptophane) Schiff bases and their manganese (III) complexes. Biometals, 17(2), 115–120.

Sani, S., and Kurawa, M. A. (2016). Synthesis, characterization and antimicrobial studies of Mn (II) complex with N-salicyl-O-hydroxyphenyleneiminato schiff base ligand. ChemSearch Journal, 7(2), 28–33.

Sani, S., Kurawa, M. A., and Siraj, I. T. (2018). Solid state synthesis, spectroscopic and x-ray studies of cu (ii) schiff base complex derived from 2-hydroxy-3-methoxybenzaldehyde and 1, 3-phenylenediamine. ChemSearch Journal, 9(1), 76–82.

Shaker, S. A., Aziz, Y. F. A., and Salleh, A. A. (2009). Synthesis and Characterization of Mixed Ligand Complexes of 8-Hydroxyquinoline and o-hydroxybenzylidene-1-phenyl-2, 3-dimethyl-4-amino-3-pyrazolin-5-on with Fe (II), Co (II), Ni (II) and Cu (II) ions. European Journal of Scientific Research, 33(4), 702–709.

Siraj, I. T., and Kurawa, M. A. (2020). Green Synthesis of Nickel (II) and Zinc (II) Complexes of Bis (Imine) Schiff base Derived from o-vanilline and m-phenylenediamine. International Journal of Chemical Synthesis and Chemical Reactions, 6(1), 31–43.

Stilinović, V., Cinčić, D., Zbačnik, M., and Kaitner, B. (2012). Controlling solvate formation of a Schiff base by combining mechano-chemistry with solution synthesis. Croatica Chemica Acta, 85(4), 485–493.

Tas, E., Aslanoglu, M., Kilic, A., and Kara, Z. (2006). Synthesis, spectroscopic and electrochemical studies of copper (II) and cobalt (II) complexes of three unsymmetrical vic-dioximes ligands. Journal of Coordination Chemistry, 59(8), 861–872.

Tigineh, G. T., and Liu, L.-K. (2014). Studies on mechanochemistry: solid coordination compounds from primary aromatic amines and cobalt (ii) chloride hexahydrate. Journal of the Chinese Chemical Society, 61(11), 1180–1187.

Wang, F., Yao, J., Si, Y., Chen, H., Russel, M., Chen, K., Qian, Y., Zaray, G., and Bramanti, E. (2010). Short-time effect of heavy metals upon microbial community activity. Journal of Hazardous Materials, 173(1–3), 510–516.

Yusha’u, M., and Sadisu, F. U. (2011). Inhibition activity of detarium microcarpum extracts on some clinical bacterial isolates. Biological and Environmental Science Journal for the Tropics, 8(4), 113–117.

Zaky, R., and Fekri, A. (2018). Solvent-free mechanochemical synthesis of Zn (II), Cd (II), and Cu (II) complexes with 1-(4-methoxyphenyl)-4-(2-(1-(pyridin-2-yl) ethylidene) hydrazinyl)-1H-pyrrole-3-carbonitrile. Green Processing and Synthesis, 7(6), 515–523.

Zhong, W., Zhong, G. Q., Zhang, Y., and Zhong, Q. (2012). Solvent-Free synthesis and characterization of the zn (ii) complexes with amino acid schiff base. Advanced Materials Research, 455, 740–745.



  • There are currently no refbacks.

Copyright (c) 2022 Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ASEAN Journal of Science and Engineering (AJSE) is published by UPI 

View My Stats