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A B S T R A C T 
Linear algebra is the study of vectors in vector spaces, and linear transformation in that vector spaces. In this 
paper, we review and extend how some phenomena, system, and even information in chemistry can be described 
and/or modelled as vectors or matrices, thus allowing the use of linear algebra methods in the description of the 
system. In particular, we show how first order chemical kinetic mechanism, multiple linear regression, quantum 
states, and chemical graph theory can all described using matrices. 
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A B S T R A K 

Aljabar linier merupakan bidang ilmu yang mengkaji vektor di dalam ruang vektor, dan transformasi linier dalam 
ruang vektor tersebut. Dalam naskah ini kami meninjau ulang, dan menambahkan bagaimana beberapa 
fenomena, sistem, maupun informasi dapat dinyatakan sebagai vektor atau matriks, sehingga dapat digunakan 
metode aljabar linier untuk mendeskripsikan sistem tersebut. Kami menunjukkan bahwa mekanisme kinetika 
kimia orde 1, regresi multilinier, representasi keadaan kuantum, dan aplikasi teori graf dalam kimia dapat 
direpresentasikan sebagai matriks. 

 
Kata Kunci:Aljabar Linear, Matriks, Vektor, Swanilai, Persamaan Diferensial. 
 

 

INTRODUCTION 

In modern mathematics, subjects of study are usually 
categorized into what the object that was studied, and what 
methods was used in that study. With object of study 
include harmonic functions, topological spaces, algebraic 
structure, and vector spaces. The study of vector spaces and 
linear transformations in said space is called linear algebra. 
Formally, vector space 𝑉 over a scalar field 𝐹 is a set with 2 
binary operations (+,×) that fulfill these following axioms 

1. (𝑉, +) is an abelian group 

2. (∀𝑎, 𝑏 𝜖 𝐹)(∀𝒗 𝜖 𝑉) (𝑎(𝑏𝒗) = (𝑎𝑏)𝒗) 

3. (∃ 1 𝜖)(∀𝒗) (1𝒗 = 𝒗) 

4. (∀𝑎, 𝑏 𝜖 𝐹)(∀𝒗 𝜖 𝑉) ((𝑎 + 𝑏)𝒗 = 𝑎𝒗 + 𝑏𝒗) 

5. (∀𝑎 𝜖 𝐹)(∀𝒖, 𝒗 𝜖 𝑉)(𝑎(𝒖 + 𝒗) = 𝑎𝒖 + 𝑎𝒗) 

Elements of 𝑉 will then called vectors and elements of 𝐹 will 
then called scalars. 

Within this vector spaces we can also defined 
transformation from a certain vector to another vector. And 
if a certain transformation 𝑇 fulfill these properties [1-2] 

𝑇(𝑎𝒖 + 𝑏𝒗) = 𝑇(𝑎𝒖) + 𝑇(𝑏𝒗) = 𝑎𝑇(𝒖) + 𝑏𝑇(𝒗) 

Despite being very general and abstract in its definitions, 
in most cases, vectors, scalars, and even transformation in 
a given vector space is represented as matrices with scalar 
is represented as 1×1 matrix, vector as column matrix, and 
linear transformation in a given space as square matrix, and 
linear transformation between spaces is given by 
rectangular matrix with appropriate dimension. Due to this, 
linear algebra is widely use in formal science for 
representation of state, and physical science to model the 
properties and behavior of linear system. 
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In this paper, we will revisit some of the simplest 
applications of linear algebra which include First-Order 
Chemical Kinetic Mechanism [3], Multiple Linear Regression 
[4-7], Representation of Quantum States [8-11], and Graph 
Theory 

 

 

FIRST-ORDER CHEMICAL KINETICS MECHANISM 

Chemical kinetics is the study of reaction mechanism, 
reaction rates, and rate laws. For a simple elementary 
reaction 

𝑎𝐴 + 𝑏𝐵 +⋯ → 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

 The rate law is given by 

−
1

𝑎

𝑑[𝐴]

𝑑𝑡
= 𝑘[𝐴]𝑎[𝐵]𝑏 … =∏[𝑅]𝑛

𝑟𝑛

𝑛

 

From the given equation, it is easy to conclude the 
general rate law is by no mean linear. However, for some 
special cases, there are system of complex reactions for 
which every term in it is linear. Examples of these reactions 
include consecutive reaction and opposing reaction. 

Consecutive Reaction 
Simple generic consecutive reaction will be given by 

𝐴
𝑘1
→𝐵

𝑘2
→ 𝐶 

The rate laws for each species if given by 

𝑑

𝑑𝑡
[𝐴] = −𝑘1[𝐴] 

𝑑

𝑑𝑡
[𝐵] = 𝑘1[𝐴] − 𝑘2[𝐵] 

𝑑

𝑑𝑡
[𝐶] = 𝑘2[𝐵] 

It can be seen that all equations are actually linear, and 
should be solvable using linear algebra. Those equations can 
be combined into a single equation 

𝑑

𝑑𝑡
(

[𝐴]

[𝐵]

[𝐶]
) = (

−𝑘1 0 0
𝑘1 −𝑘2 0
0 𝑘2 0

)(

[𝐴]

[𝐵]

[𝐶]
) 

𝑑

𝑑𝑡
𝑅⃗ = 𝐾𝑅⃗  

Where, 𝑅⃗  is the concentration vectors, and 𝐾 is the 
constants matrix. Through abuse of notations, we can write 
the solution for this equation is given by 

𝑅⃗ = 𝑒𝐾𝑡𝑅⃗ (0) 

Where, 𝑒𝐾 is exponential of a matrix which is given by 

exp ((

−𝑘1 0 0
𝑘1 −𝑘2 0
0 𝑘2 0

) 𝑡) = 𝑃 (
𝑒𝜆1𝑡 0 0
0 𝑒𝜆2𝑡 0
0 0 𝑒𝜆3𝑡

)𝑃−1 

Where, the columns of 𝑃 are the eigenvectors of matrix 
𝐾 with 𝜆𝑛 is the corresponding eigenvalues of the 
eigenvectors. 

This exponential function can also be replaced by any 
function that can be represented by power series. 

𝑓 (

−𝑘1 0 0
𝑘1 −𝑘2 0
0 𝑘2 0

) =  𝑃 (

𝑓(𝜆1) 0 0
0 𝑓(𝜆2) 0

0 0 𝑓(𝜆3)
)𝑃−1 

The matrix exponential for consecutive reaction is given 
by 

𝑒𝐾 = 𝑃 (
𝑒0 0 0
0 𝑒−𝑘1 0
0 0 𝑒−𝑘2

)𝑃−1 

 

𝑃 =

(

 
 
0

𝑘1 − 𝑘2
𝑘2

0

0 −
𝑘1
𝑘2

−1

1 0 1 )

 
 

 

And assuming that only 𝐴 has non-zero initial 
concentration, this following equation 

(

  
 

𝑒−𝑘1𝑡 0 0
𝑘1(𝑒

−𝑘2𝑡 − 𝑒−𝑘1𝑡)

𝑘1 − 𝑘2
𝑒−𝑘2𝑡 0

𝑘2𝑒
−𝑘1𝑡 − 𝑘1𝑒

−𝑘2𝑡

𝑘1 − 𝑘2
+ 1 −𝑒−𝑘2𝑡 + 1 1

)

  
 
(
[𝐴]0
0
0

) 

 

(

[𝐴]

[𝐵]

[𝐶]
) =

(

 
 
 

[𝐴]0𝑒
−𝑘1𝑡

[𝐴]0𝑘1 (
𝑒−𝑘2𝑡 − 𝑒−𝑘1𝑡

𝑘1 − 𝑘2
)

[𝐴]0 (
𝑘2𝑒

−𝑘1𝑡 − 𝑘1𝑒
−𝑘2𝑡

𝑘1 − 𝑘2
+ 1)

)

 
 
 

 

 

Which if plotted will produce this following graph. 

 
Figure 1. Concentration as function of time in consecutive 

reaction 

 

Opposing Reaction 
Simplest opposing chemical reaction is given by 

𝑘1
𝐴 ⇌ 𝐵
𝑘−1

 

And the rate law will be given by 

𝑑

𝑑𝑡
[𝐴] = −𝑘1[𝐴] + 𝑘−1[𝐵] 

𝑑

𝑑𝑡
[𝐵] = 𝑘1[𝐴] − 𝑘−1[𝐵] 
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Analogous with the consecutive reaction, these rate 
laws can be combined into 

𝑑

𝑑𝑡
(
[𝐴]

[𝐵]
) = (

−𝑘1 𝑘−1
𝑘1 −𝑘−1

) ((
[𝐴]

[𝐵]
)) 

With matrix exponential given by 

𝑒𝐾𝑡 = (

𝑘−1
𝑘1

−1

1 1

)(𝑒
0𝑡 0
0 𝑒−(𝑘1+𝑘−1)𝑡

) (

𝑘−1
𝑘1

−1

1 1

)

−1

 

Therefore, the solutions for the rate law, assuming only 
𝐴 has non-zero initial concentration, the equation can be 
written as 

(
[𝐴]

[𝐵]
) = (

[𝐴]0
𝑘1 + 𝑘−1

) (
𝑘1𝑒

−(𝑘1+𝑘−1)𝑡 + 𝑘−1
𝑘1 − 𝑘−1𝑒

−(𝑘1+𝑘−1)𝑡
) 

And if plotted will produce this following graph 

 
Figure 2. Concentration as function of time in opposing 

reaction 

 

MULTIPLE LINEAR REGRESSION 

Regression analysis is a very important method of data 
analysis in chemistry, because a lot of data can be simplified 
into a simple linear regression model. However, there are 
data that simply cannot be fitted into simple linear 
regression model and have to be reduced into multiple 
linear regression model instead. Generalization from simple 
linear regression into multiple linear regression while 
cannot be considered to be complicated, it is by no mean 
can be considered to be trivial. Consider this following data 
from screened Coulombic (-Yukawa) potential (𝑉𝑌) as 
function of distance (𝑟) 

Table 1. Potential as function of distance in certain system 

𝑟 𝑉𝑌 (×10-6) 

2.0 -20.1 

4.0 -7.56 

6.0 -3.80 

8.0 -2.14 

10 -1.29 

12 -0.811 

 

The equation for this potential is given by 

𝑉𝑌 = −𝑔
2
𝑒−𝛼𝑚𝑟

𝑟
 

 Where, 𝑔 is the coupling constant, 𝛼 is the mass scaling 
constant, and 𝑚 is the mass of the gauge boson – which is 
zero for photon, and non-zero for weak interaction. 

Linearization of that equation using logarithm will 
produce 

ln(−𝑉𝑌) = ln (𝑔
2
𝑒−𝛼𝑚𝑟

𝑟
) 

ln(−𝑉𝑌) = ln(𝑔
2) + ln (

1

𝑟
) + ln(𝑒−𝛼𝑚𝑟) 

ln(−𝑉𝑌) = ln(𝑔
2) − ln(𝑟) − 𝛼𝑚𝑟 

 

It can be seen that the equation while depend only to 
distance, there are 2 functions for distance which are linear 
and logarithmic, therefore simple linear regression will not 
be able to compute the parameters. By rewriting the data 
in Table 1 will produce 

Table 2. Linearized data for regression 

ln(−𝑉𝑌) ln(𝑟) 𝑟 

-10.815 0.693 2.0 

-11.793 1.386 4.0 

-12.481 1.792 6.0 

-13.055 2.079 8.0 

-13.561 2.303 10 

-14.025 2.485 12 

 

This data table can split into 2 matrices, which are the 𝑌 
matrix and 𝑋 matrix 

𝑌 =

(

 
 
 

−10.815
−11.793
−12.481
−13.055
−13.561
−14.025)

 
 
 

 

 

𝑋 =

(

  
 

1 0.693 2.0
1 1.386 4.0
1 1.792 6.0
1 2.079 8.0
1 2.303 10
1 2.485 12)

  
 

 

Due to the linearized equation of the Yukawa potential, 
the relation between these matrices can be written as 

(

 
 
 

−10.815
−11.793
−12.481
−13.055
−13.561
−14.025)

 
 
 
=

(

  
 

1 0.693 2.0
1 1.386 4.0
1 1.792 6.0
1 2.079 8.0
1 2.303 10
1 2.485 12)

  
 
(

𝛽0
𝛽1
𝛽2

) +

(

  
 

𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6)

  
 

 

𝑌 = 𝑋𝛽 + 𝜀 

Where, 𝜀 is the error vector, 𝛽 is the coefficient vector, 
and 𝑋 is the independent variable matrix. The addition of 
ones column into the matrix to account for the constant 
term in the equation. If for some reason the constant term 
does not exist, then the constant term can be removed from 
the matrix. However, in this example, there is a constant 
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term of ln(𝑔2). By trying to minimize the value of 𝜀𝑇𝜀, the 
𝛽 vector is given by 

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 

𝛽 = (
−9.8437
−1.003
−0.141

) = (
ln(𝑔2)
−1
−𝛼𝑚

) 

Substituting these parameters back into the equation for 
Yukawa potential and calculating the interaction using it will 
produce 

Table 3. Comparison between regression results with data 

𝑟 
𝑉𝑌 (×10-6) 

Data Regression 

2.0 -20.1 -20.1 

4.0 -7.56 -7.56 

6.0 -3.80 -3.79 

8.0 -2.14 -2.14 

10 -1.29 -1.29 

12 -0.811 -0.810 

 

 
Figure 3 Comparison between data and regression results 

 

REPRESENTATION OF QUANTUM STATE 

Wavefunction and Operator 
Quantum mechanics is the model that is used for 

quantum system. The most widely used formulation of this 
Schrodinger wave mechanics, in which the state of the 
system is described as wavefunctions and the observable of 
the system is described as linear operator, and this 
description is summarized in linear second order 
homogenous partial differential equation, which is also an 
eigenvalue equation. 

𝐻̂|𝜓⟩ = [−
ℏ2

2𝑚
∇2 + 𝑉(𝑥)] |𝜓⟩ = 𝑖ℏ

𝜕

𝜕𝑡
|𝜓⟩ = 𝐸|𝜓⟩ 

Solutions to this equation is fully defined by the 
Hamiltonian of the system. If the wavefunction is already 
normalized, then 

⟨𝜓𝑚|𝜓𝑛⟩ = ∫ 𝜓𝑚
∗ 𝜓𝑛

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝑑𝜏 = 𝛿𝑚𝑛 

And the expected value of observable with operator Ω̂ 
will be given by 

⟨𝜓|Ω̂|𝜓⟩ = ∫ 𝜓𝑚
∗ Ω̂𝜓𝑛

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝑑𝜏 

Despite the simplicity and the fact that this formulation 
is visualizable, it is easier to understand the operator form 
of this equation as well as its properties is we actually 
understand it as matrices and vectors. 

For example, consider particle in 1-D box system. The 
potential of the system is given by 

𝑉(𝑥) = {
0, 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑏𝑜𝑥
∞, 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑏𝑜𝑥

 

And the energy and wavefunction of the system is given 
by 

𝐸𝑛 = 𝑛
2
𝜋2ℏ2

2𝑚𝐿2
= 𝑛2𝐸1 

𝜓𝑛 = √
2

𝐿
sin (

𝑛𝜋

𝐿
𝑥) 

We can choose to describe this system with these 
following infinite matrices 

𝐻̂ = (

𝐸1 0 0 ⋯
0 𝐸2 0 ⋯
0 0 𝐸3 ⋯
⋮ ⋮ ⋮ ⋱

) 

 

|𝜓𝑛⟩ =

(

 
 

⋮
0
1
0
⋮)

 
 

 

 

⟨𝜓| = (|𝜓𝑛⟩
∗)𝑇 

 

Where nth component of |𝜓𝑛⟩ is 1 and zero everywhere 
else. It is then trivial to show that 

⟨𝜓𝑛|𝜓𝑛⟩ = (⋯ 0 1 0 ⋯)

(

 
 

⋮
0
1
0
⋮)

 
 
= 1 

And 

⟨𝜓𝑛|𝐻̂|𝜓𝑛⟩

= (⋯ 0 1 0 ⋯)(

𝐸1 0 0 ⋯
0 4𝐸1 0 ⋯
0 0 9𝐸1 ⋯
⋮ ⋮ ⋮ ⋱

)

(

 
 

⋮
0
1
0
⋮)

 
 
= 𝐸𝑛  

It is also trivial to show that for quantum harmonic 
oscillator the Hamiltonian is given by 

𝐻̂ = (

𝐸1 0 0 ⋯
0 𝐸2 0 ⋯
0 0 𝐸3 ⋯
⋮ ⋮ ⋮ ⋱

) =

(

 
 
 
 

1

2
ℏ𝜔 0 0 ⋯

0
3

2
ℏ𝜔 0 ⋯

0 0
5

2
ℏ𝜔 ⋯

⋮ ⋮ ⋮ ⋱)

 
 
 
 

 

This formulation of quantum states as vectors in infinite 
dimensional space also explain the need for Hilbert space as 
the space of quantum states, and how operators are 
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basically just linear transformation in infinite dimensional 
complex space. 

Density Matrix 
Density matrix is an alternative – and arguably – better 

way of representing the state of a quantum system. Unlike 
wavefunctions or state vectors, density matrix is more 
general because its can be used to represent not only 
superposition of pure states, but combinations of mixed 
quantum states. Consider a general pure state |𝜓⟩, the 
density matrix of that state is given by 

𝜌 = |𝜓⟩⟨𝜓| 

And if the system is defined by multiple states and we do 
not have the information for the exact states of the system, 
the density matrix of that system can be written as 

𝜌 =∑|𝜓𝑛⟩⟨𝜓𝑛|

𝑛

 

With the hidden information that we lack is measured as 
von Neumann entropy is defined as 

𝐻 = 𝑡𝑟(𝜌 ln 𝜌) 

 

GRAPH THEORY 

Graph theory is the study of graphs, which are nodes 
(vertices) connected by edges. Formally, graph  𝐺(𝑉, 𝐸) is 
defined as collection of vertices 𝑉 and collection of edges 𝐸. 

Graph theory is quite useful in chemistry due to its 
invariance under permutation (re-labelling) and how a 
graph is fully defined by connections between just like most 
chemical compounds are fully defined by bonds between 
the atoms. Consider molecule of isobutane 

 
Figure 4 Structure of isobutane 

This molecular structure can be described as a graph 
with vertices representing the atoms and edges 
representing bond. 

A

D

B

C
 

Figure 5 Graph representation of isobutane 

This graph can then be represented as square matrix 
called adjacency matrix. Within this matrix, each row and 

column correspond to a specific vertex, and the matrix 
elements is 1 if there is an edge between the vertices, and 
0 everywhere else. The graph is Figure 5 can then be 
represented as this following matrix 

𝐴 = (

0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0

) 

It is important to note that this adjacency matrix or any 
matrix produced from a graph is not – in general – invariant 
to re-labelling. However, due to permutation invariance, 
graph spectra (set of its eigenvalues) are invariant under re-
labelling. This is why most application of graph theory 
usually used eigenvalue of the graph or any other invariant 
of a graph. An example of this energy of the graph which 
defined as sum of absolute value of  

ℰ =∑|𝜆𝑣|

𝑣𝜖𝑉

 

Which for graph of isobutane is 2√3. 

 

CONCLUSIONS. 

We show how linear algebra as a branch of mathematics 
can be used in chemistry as it can be used to solve system 
of linear differential equation, calculating the coefficients of 
variables in multiple linear regression, as well as 
representation of chemical system, especially through state 
vectors, density matrices, and adjacency graphs. 

We also show how some properties of matrices such as 
its eigenvalues, eigenvectors, and its trace can used in to 
calculate properties of chemical system. Eigenvalues and 
eigenvectors in particular can be used in matrix 
diagonalization that was used in calculating matrix function. 
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