Economic Evaluation of Cobalt Ferrite (CoFe2O4) Through Coprecipitation Method Using Biodegradable Surfactant (Potato Starch)

Wafa Raihanah Arwa, Dewi Yulina Nur Solehah, Sadina Sahitya Dewi, Silmi Ridwan Putri, Asep Bayu Dani Nandiyanto


The aim of this study was to analyse the feasibility of cobalt ferrite (CoFe2O4) nanoparticles production on an industrial scale using the coprecipitation synthesis method. The analysis was carried out based on an economic and technical perspective. The method used is by calculating several economic evaluation parameters such as gross profile margin (GPM), payback period (PBP), breakeven points (BEP), internal rate return (IRR), cumulative net present value (CNPV), return on investment (ROI), and profitability index (PI). The results show that the production of CoFe2O4 nanoparticles using the coprecipitation method is profitable with the recovery of investment funds which only takes three years after the project is made. Another advantage of production using this method is that it can use biodegradable surfactants (potato starch) and produce superior products with economical selling prices through practical product processing. This research is expected to provide a positive contribution to the industry for the manufacture of CoFe2O4 nanoparticles by coprecipitation method using biodegradable surfactants.

Kata Kunci

Economic Evaluation; Co-precipitation Synthesis Method; Cobalt Ferrite Nanoparticle; Potato Starch Surfactant

Teks Lengkap:

PDF (English)


Naseri, M-G., Saion, E. B., Abbastabar Ahangar, H., Shaari, A. H., & Hashim, M. (2010). Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method. Journal of Nanomaterials, 2010, 1–8.

Rao, K. S., Choudary, G. S. V. R. K., Rao, K. H., & Sujatha, C. (2015). Structural and magnetic properties of ultrafine CoFe2O4 nanoparticles. Procedia Materials Science, 10, 19-27.

Ansari, S. M., Sinha, B. B., Phase, D., Sen, D., Sastry, P. U., Kolekar, Y. D., & Ramana, C. V. (2019). Particle size, morphology, and chemical composition controlled CoFe2O4 nanoparticles with Tunable magnetic properties via oleic acid based solvothermal synthesis for application in electronic devices. ACS Applied Nano Materials, 2(4), 1828-1843.

Sharifi, I., Shokrollahi, H., Doroodmand, M. M., & Safi, R. (2012). Magnetic and structural studies on CoFe2O4 nanoparticles synthesized by co-precipitation, normal micelles and reverse micelles methods. Journal of Magnetism and Magnetic Materials, 324(10), 1854-1861.

Lavorato, G., Alzamora, M., Contreras, C., Burlandy, G., Litterst, F. J., & Baggio‐Saitovitch, E. (2019). Internal structure and magnetic properties in cobalt ferrite nanoparticles: influence of the synthesis method. Particle & Particle Systems Characterization, 1900061.

Cotica, L. F., Freitas, V. F., Silva, D. M., Honjoya, Kyang., Santos, I. A., Fontanive, C. P., Khalil, N. M., Mainardes, R. M., Kioshima, E. S., Guo, R. & Bhalla, A. S. (2014). Thermal decomposition synthesis and assessment of effects on blood cells and in vivo damages of cobalt ferrite nanoparticles. Journal of Nano Research, 28, 131–140.

Najeehah, C. Z., Chaudhary, K. T., & Ali, J. (2020). Synthesis and characterization of cobalt ferrite nanoparticles via sol-gel auto combustion method. Solid State Phenomena, 307, 58-63.

Hashemi, S. M., Hasani, S., Ardakani, K. J., & Davar, F. (2019). The effect of simultaneous addition of ethylene glycol and agarose on the structural and magnetic properties of CoFe2O4 nanoparticles prepared by the sol-gel auto-combustion method. Journal of Magnetism and Magnetic Materials. 492, 165714.

Abraime, B., El Maalam, K., Fkhar, L., Mahmoud, A., Boschini, F., Tamerd, M. A., Benyoussef, A., Hamedoun, M., Hlil, E. K., Ali, M. A., El Kenz, A., Mounkachi, O. (2020). Influence of synthesis methods with low annealing temperature on the structural and magnetic properties of CoFe2O4 nanopowders for permanent magnet application. Journal of Magnetism and Magnetic Materials, 500, 166416.

Sodaee, T., Ghasemi, A., Paimozd, E., Paesano, A., & Morisako, A. (2013). An approach for enhancement of saturation magnetization in cobalt ferrite nanoparticles by incorporation of terbium cation. Journal of Electronic Materials, 42(9), 2771-2783.

Zhao, L., Zhang, H., Xing, Y., Song, S., Yu, S., Shi, W., Guo, X., Yang, J., Lei, Y. and Cao, F. (2008). Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method. Journal of Solid State Chemistry, 181(2), 245-252.

Allaedini, G., Tasirin, S. M., & Aminayi, P. (2015). Magnetic properties of cobalt ferrite synthesized by hydrothermal method. International Nano Letters, 5(4), 183-186.

Zhang, H., Nengzi, L. C., Li, B., Cheng, Q., Gou, J., & Cheng, X. (2020). Successfully synthesis of FeSe2/CoFe2O4 heterojunction with high performance for hydrogen evolution reaction. Renewable Energy, 155, 717-724.

Munjal, S., & Khare, N. (2016, April). Cobalt ferrite nanoparticles with improved aqueous colloidal stability and electrophoretic mobility. AIP Conference Proceedings 1724(1), 020092.

Ahmadi, R., Imani, M., & Tadjarodi, A. (2020). Microwave assisted synthesis of cofe2o4 nanoparticles by utilizing organic promoters and evaluation of its properties. Multidisciplinary Digital Publishing Institute, 3(1), 52.

Golchinvafa, S., Masoudpanah, S. M., & Jazirehpour, M. (2019). Magnetic and microwave absorption properties of FeCo/CoFe2O4 composite powders. Journal of Alloys and Compounds, 809, 151746.

Phong, P. T., Phuc, N. X., Nam, P. H., Chien, N. V., Dung, D. D., & Linh, P. H. (2018). Size-controlled heating ability of CoFe2O4 nanoparticles for hyperthermia applications. Physica B: Condensed Matter, 531, 30–34.

Ravindra, A. V., Chandrika, M., Rajesh, C., Kollu, P., Ju, S., & Ramarao, S. D. (2019). Simple synthesis, structural and optical properties of cobalt ferrite nanoparticles. The European Physical Journal Plus, 134(6), 1-10.

Olusegun, S. J., Freitas, E. T. F., Lara, L. R. S., Stumpf, H. O., & Mohallem, N. D. S. (2019). Effect of drying process and calcination on the structural and magnetic properties of cobalt ferrite. Ceramics International, 45(7), 8734-8743.

Stein, C. R., Bezerra, M. T. S., Holanda, G. H. A., André-Filho, J., & Morais, P. C. (2018). Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures. AIP Advances, 8(5), 056303.

Priatna, D., & Nandiyanto, A. B. D. (2019). Engineering and Economic Evaluation of Production of MgO Nanoparticles using a Physicochemical Method. International journal of advanced smart convergence, 8(4), 26-33.

Prabowo, B., Khairunnisa, T., & Nandiyanto, A. B. D. (2018). Economic Perspective in the Production of Magnetite (Fe3O4) Nanoparticles by Co-precipitation Method. World Chemical Engineering Journal, 2(2), 1-4.

Nandatamadini, F., Karina, S., Nandiyanto, A. B. D., & Ragadhita, R. (2019). Feasibility study based on economic perspective of cobalt nanoparticle synthesis with chemical reduction method. Cakra Kimia (Indonesian E-Journal of Applied Chemistry), 7(1), 61-68.

Zahra, F., Utami, F. A., Girsang, G. C. S., Mulya, S. Z. M. S., Fentiana, V. D., Putri, Y. K., & Nandiyanto, A. B. D. (2020). Economic evaluation of zinc oxide nanoparticle production through green synthesis method using Cassia fistula plant extract.



  • Saat ini tidak ada refbacks.