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A B S T R A C T   A R T I C L E   I N F O 

Target tracking is a process that can find points in different 
domains. In tracking, some places contain prizes (positive or 
negative values) that the agent does not know at first. 
Therefore, the agent, which is a system, must learn to get the 
maximum value with various learning rates. Reinforcement 
learning is a machine learning technique in which agents 
learn through interaction with the environment using reward 
functions and probabilistic dynamics to allow agents to 
explore and learn about the environment through various 
iterations. Thus, for each action taken, the agent receives a 
reward from the environment, which determines positive or 
negative behavior. The agent's goal is to maximize the total 
reward received during the interaction. In this case, the 
agent will study three different modules, namely sidewalk, 
obstacle, and product, using the Q-learning algorithm. Each 
module will be training with various learning rates and 
rewards. Q-learning can work effectively with the highest 
final reward at a learning rate of 0.8 for 500 rounds with an 
epsilon of 0.9. 
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1. INTRODUCTION 
 

Determination of distribution channels can determine the optimal path with distance, 
time, and capacity as aspects of consideration [1]. Many methods can be used to optimize the 
path, such as the Heuristic Algorithm, the Tabu Search Method for delivery [2], the Ant Colony 
Optimization (ACO) method for mobile robot navigation [3], and others. Getting the optimal 
path will provide many advantages in terms of time, speed, cost and avoid losses caused by 
certain conditions such as congestion. The optimal path is determined from one place to a 
particular destination, and it has a starting point and stops at a predetermined endpoint with 
various conditions encountered. We try to approach the initial situations at any point and the 
stopping point in more than one place, meaning that it has several places as temporary stops 
and one final stop that occurs anywhere (random location).  

In this study, we consider the problem of tracking multiple objects in an environment. An 
environment is a rectangular space bounded by a sidewalk. We use model-free reinforcement 
learning to train the tracker to detect the product and avoid any obstacle in its movement. In 
other words, the agent must find the best way to achieve the highest reward. However, one 
of the challenges in reinforcement learning is the problem of exploration vs. exploitation, 
which is a trade-off between obtaining a tip from a choice that is considered safe and 
exploring other possibilities that may be profitable. The investigation allows increasing agent 
knowledge, which leads to long-term benefits. At the same time, exploitation chooses the 
action to get the most rewards but leads to less than optimal behavior. Our learning is done 
through python simulations to observe the system's characteristics. The agent will explore 
specific paths to get information. Then, the agent uses this information in the exploitation to 
choose the best path for branching lanes. The agent will take action using greedy epsilon. 
Therefore, it is essential to get the best level of learning for agents to bring efficiency in taking 
steps. 

2. METHODS 
 
2.1. Reinforcement Learning 

As part of machine learning methods, reinforcement learning (RL) [4-5] has been widely 
used in several disciplines to find optimal policies in an uncertain environment. Many studies 
have been carried out to develop RL techniques to find optimal feedback solutions, such as 
the zero-sum game problem [6] RL works by interacting with the environment. The RL 
algorithm works like the human brain when making several decisions and helps to take 
decisions sequentially. Figure 1. shows the interaction of agents with the environment in 
taking action to maximize reward. 

RL studied effective strategies for agents from experimental trials and received feedback. 
With an optimal design, agents can actively adapt to the environment to maximize future 
rewards. The agent can remain in one of the many states (s ∈ S) in the background and choose 
to take action (a ∈ A) to move from one state to the next. The state where the agent will arrive 
is determined by the transition probability between states (P). After the action is taken, the 
environment rewards (r ∈ R) as feedback. In this study, state (s) is the location, activity (a) is 
the action (movement) that must be taken, and the reward (r) is the initial value given when 
the move occurs. 
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Figure 1. Interaction of agent with the environment. 

In defining the reward function and transition probability. If the model is known, it means 
planning with perfect information, i.e., doing model-based RL. We can find the optimal 
solution with Dynamic Programming (DP) when we fully see the environment. However, if the 
model is unknown, that means learning with incomplete information, i.e., doing RL model-
free or learning the model explicitly as part of the algorithm. 

The model describes the environment, and we can study or infer how the environment will 
interact with models and provide feedback to agents. This model has two main parts, the 
transition probability function P and the reward function R. In Equation [1], the transition 
function P records the transition probability from state (s) to ( s') after performing an action 
and obtaining (a) temporary reward (r). 

𝑃(𝑠′, 𝑟|𝑠, 𝑎)=ℙ[𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (1) 

Thus, the transition function between states can be defined in Equation [2] as a function 
of P(s′,r|s,a). 

𝑃𝑠𝑠′
𝑎 = 𝑃(𝑠′|𝑠, 𝑎) = ℙ[𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = ∑ 𝑃(𝑠′, 𝑟|𝑠, 𝑎)

𝑟∈𝑅

 (2) 
 

And the reward function R in Equation [3] predicts the next reward based on an action. The 
agent's only goal is to maximize the total reward he receives in the long run. Therefore, this 
reward function is important in mapping each state in the environment to a numerical 
reward. 

𝑅(𝑠, 𝑎) = 𝔼[𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = ∑ 𝑟

𝑟∈𝑅

∑ 𝑃(𝑠′, 𝑟|𝑠, 𝑎)

𝑟∈𝑅

 (3) 
 

2.2. Q-Learning 

In defining the reward function and transition probability. If the model is known, it means 
planning with perfect information, i.e., doing model-based RL. We can find the optimal 
solution with Dynamic Programming (DP) when we fully see the environment. However, if the 
model is unknown, that means learning with incomplete information, i.e., doing RL model-
free or learning the model explicitly as part of the algorithm. 

Q-learning is one of the important breakthroughs in reinforcement learning, which is the 
development of the Temporal Difference algorithm introduced by Watkins in 1989 [7-8] but 
The Q learning algorithm in its early use is flawed in several aspects and its application is 
limited [9]. Nowadays, some improved method of Q-Learning which combine with the Deep 
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Learning method and named Deep Q-Learning and has been implemented in robotic 
application [10-12]. The Q in q-learning stands for quality, which indicates how useful a given 
action is in getting rewards in the future. Equation [4] below is in the form of the Q-learning 
formula. 

𝑄(𝑆𝑡, 𝐴𝑡)←𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼(𝑅𝑡+1 + 𝛾 𝑚𝑎𝑥𝑎∈𝐴𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)) (4) 

Q-learning takes action with the highest reward because Q-learning does not use a 
behavior policy to select the additional action At+1. Instead, estimate the expected future 
return in the update rule as max A Q (St+1, A). The max operator used follows a greedy policy. 
Q-Learning will converge to the optimal solution assuming that, after generating experience 
and training, it switches to a greedy policy. In Equation [4], St is state S at time t, At which is 
action A at time t, while St+1 is the next state which will be the target of movement, and 
action At+1 and reward Rt+1. Therefore, the transition probability function P and the reward 
function R affect the next reward that will be obtained. We define the set of states S as {1, 2, 
…, 40} which means we have 40 location points, the group of actions A {up, down, left, right} 
which means that the possible moves are up, down, left, right, while for the positive R reward 
while {1, 10, 100} and the negative R reward while {-1, -10, -100} [13-20]. 

2.3. System Performance 

The flow of system performance is shown in Figure 2. We will first create a table of n 
columns and m rows, where n is the number of actions and m is the number of states. Then 
assign zero values to all columns and rows. In the next step, we will select action an in state 
(s) based on the q-table, but as mentioned earlier, at the start, all values are 0. So, we use the 
greedy epsilon method to select actions randomly (up, down, left, right). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. System performance scenario using Q-learning. 

 
  

Q-Table Initialization  

Choose Action 

Take Action 

Measuring Reward 

Update Q-Table 
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The system will execute the chosen action based on the greedy epsilon. After the move is 
obtained, the rewards and results are observed, then update the Q(s, a) function according 
to Equation [4]. After that, we will return to step two to do the next round until the condition 
stops. Table Q helps us find the best action in each state, and this is useful for maximizing the 
expected reward by choosing the best of all possible activities. Q(s, a) returns the expected 
future reward of the action on that state. When the q-table is ready, the agent will exploit the 
environment and take better steps. 

3. RESULTS AND DISCUSSION 
 

Figure 3. shows that when the agent moves, the agent will learn the best path to the end 
of the sidewalk through the reward function. Agent (A) starts at position (1,1). Sidewalks 
consist of rows and columns, not sidewalks denoted by a line (-). Obstacles (x) and Product 
(o) are placed randomly. 

 

Figure 3. Location of sidewalk, obstacles and product points. 

In this case, the state is a collection of locations, and actions are moves that the agent can 
perform. The state-transition function is the probability of an agent moving from one state to 
another through several actions. As an algorithm for learning with incomplete information, q-
learning is chosen in this study for the application of RL, which is used to train agents in the 
environment. When q-learning is applied, we create a matrix that follows the form [state, 
action] and assigns an initial value (q-value) of zero. We then update and store the q-value 
after each round. The matrix, called q-table, becomes a reference table for agents to choose 
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the best action based on the q-value. The state values for each possible action are entered 
into the q-table. The most significant matter is obtained according to the action that will give 
the maximum value from the next step. 

We will train agents on each module and combine them linearly. The selected action is 
determined by the greedy method; the agent will use the appropriate q-table to choose the 
action with the maximum expected value. However, the steps are not deterministic, so it is 
possible that the agent will not initially take the best move for a given state to encourage 
exploration. The sidewalk module is trained to give positive rewards to agents when they 
reach the sidewalk's end and give them negative rewards when they move out of the 
sidewalk. In the obstacles module, the agent has a window with 3×3 dimensions. If the object 
is in the window in a specific state, the agent will get punishment based on the reward 
function based on the distance between (0 – 1). With this, if the agent is outside the sidewalk 
and is in window obstacles, the negative value obtained is even greater. It may result in the 
agent starting training again from the beginning. The opposite happens if the agent is in the 
product window in a particular state, the agent will get a reward based on the distance-based 
reward function (0 – 1). 

Modules are trained with various learning rates and rewards. Learning rate determines the 
extent to which information can override old details. Figure 4. shows the last reward for each 
module in each training round. Figure 5. is a heatmap of the q-table on the sidewalk module 
for the “up” action. The darker areas show a lower q-value, while the lighter areas show a 
higher q-value. We display a heatmap from the q-table with the three highest learning rates 
for each module. Figure 5. shows that agents are learning to stay away from the sidewalk. 

 

Figure 4. The last reward for each module. 
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Figure 5. Q-table on the sidewalk module. 

Furthermore, the obstacle module is trained with varying alpha values and rewards after 
1000 training rounds. Figure 6. is a heatmap of the Q-table for the obstacle module for the 
“up” action. Figure 6. shows that the agent is learning to avoid obstacles. 

 

Figure 6. Q-table on the obstacle module. 

Finally, the product module is trained on various alpha values and rewards after 1000 
training rounds, and can be seen in Figure 7. 
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Figure 7. Q-table on the product module. 

Figure 8. is showing a heatmap of the linear combinations of the three q-tables for the 
“up” action. 

 

Figure 8. Q-Table combination module. 

To balance exploration and exploitation during training, we used the epsilon-greedy 
method. We give a value of epsilon=0.9, which means with a probability of 0.9, an action is 
chosen randomly from the action space. With a probability of 0.1, an effort is selected greedily 
based on argmax(Q). The highest final reward is obtained with a learning rate of 0.8 in 500 
rounds. More training provides more learning opportunities for agents, and this is the more 
stable the reward value will be. In other words, the agent is getting better at tracking, 
determining the action to the next state to get a positive reward. 
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4. CONCLUSION 
 

Q-learning is a practical algorithm for RL problems with incomplete information. This works 
best when the agent has a limited number of actions to perform in an environment with 
random conditions. Moreover, it effectively divides the problem into separate modules that 
can be adjusted and linearly combined. The agent will learn more to get the best reward with 
the higher learning rate value used. Still, the risk that arises is the possibility of error also 
increasing because it affects the agent to ignore previous knowledge to explore options. The 
higher the epsilon value, it allows the agent to expand his knowledge for each action, which 
leads to long-term benefits, increases the accuracy of value estimates, and allows the agent 
to make more informed decisions in the future, but may result in reduced chances of getting 
the most rewards. RL with the q-learning algorithm can also be used to determine the shortest 
route or optimize the movement of the robot in collecting rewards and avoiding certain states 
that can result in losses. The knowledge obtained from this research is expected to be a 
suggestion for system improvement or identification of influential variables related to 
tracking. 
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