
1

Analysis of Model-Free Reinforcement Learning

Algorithm for Target Tracking

Muhammad Fikry1, *, Rizal Tjut Adek2, Z. Zulfhazli3, Subhan Hartanto4, T. Taufiqurrahman5, Dyah Ika Rinawati 6

1,2Department of Informatics, Universitas Malikussaleh, Indonesia
3Department of Civil Engineering, Universitas Malikussaleh, Indonesia
4Department of Computer Science, Universitas Pat Petulai, Indonesia

5Department of Informatics, Universitas Sumatera Utara, Indonesia
6Department of Industrial Engineering, Universitas Diponogoro, Indonesia

Correspondence: E-mail: muh.fikry@unimal.ac.id

A B S T R A C T A R T I C L E I N F O

Target tracking is a process that can find points in different
domains. In tracking, some places contain prizes (positive or
negative values) that the agent does not know at first.
Therefore, the agent, which is a system, must learn to get the
maximum value with various learning rates. Reinforcement
learning is a machine learning technique in which agents
learn through interaction with the environment using reward
functions and probabilistic dynamics to allow agents to
explore and learn about the environment through various
iterations. Thus, for each action taken, the agent receives a
reward from the environment, which determines positive or
negative behavior. The agent's goal is to maximize the total
reward received during the interaction. In this case, the
agent will study three different modules, namely sidewalk,
obstacle, and product, using the Q-learning algorithm. Each
module will be training with various learning rates and
rewards. Q-learning can work effectively with the highest
final reward at a learning rate of 0.8 for 500 rounds with an
epsilon of 0.9.

© 2022 Universitas Pendidikan Indonesia

 Article History:
Submitted/Received 30 Jan 2022
First Revised 28 Feb 2022
Accepted 17 Mar 2022
First Available online 01 Apr 2022
Publication Date 01 Apr 2022

Keyword:
Algorithm,
Machine learning,
Probabilistic,
Q-Learning,
Reinforcement learning,
Target tracking.

Journal of Computer Engineering, Electronics and
Information Technology (COELITE)

Journal homepage: https://ejournal.upi.edu/index.php/COELITE

Journal of Computer Engineering, Electronics and Information Technology (COELITE) 1(1) (2022) 01-10

 2(1) (2022) xx-xx

mailto:muh.fikry@unimal.ac.id
https://ejournal.upi.edu/index.php/COELITE

Fikry et al., Analysis of Model-Free Reinforcement Learning Algorithm for Target Tracking | 2

DOI: https://doi.org/10.17509/coelite.v1i1.43795

p- ISSN 2829-4157 e- ISSN 2829-4149

1. INTRODUCTION

Determination of distribution channels can determine the optimal path with distance,
time, and capacity as aspects of consideration [1]. Many methods can be used to optimize the
path, such as the Heuristic Algorithm, the Tabu Search Method for delivery [2], the Ant Colony
Optimization (ACO) method for mobile robot navigation [3], and others. Getting the optimal
path will provide many advantages in terms of time, speed, cost and avoid losses caused by
certain conditions such as congestion. The optimal path is determined from one place to a
particular destination, and it has a starting point and stops at a predetermined endpoint with
various conditions encountered. We try to approach the initial situations at any point and the
stopping point in more than one place, meaning that it has several places as temporary stops
and one final stop that occurs anywhere (random location).

In this study, we consider the problem of tracking multiple objects in an environment. An
environment is a rectangular space bounded by a sidewalk. We use model-free reinforcement
learning to train the tracker to detect the product and avoid any obstacle in its movement. In
other words, the agent must find the best way to achieve the highest reward. However, one
of the challenges in reinforcement learning is the problem of exploration vs. exploitation,
which is a trade-off between obtaining a tip from a choice that is considered safe and
exploring other possibilities that may be profitable. The investigation allows increasing agent
knowledge, which leads to long-term benefits. At the same time, exploitation chooses the
action to get the most rewards but leads to less than optimal behavior. Our learning is done
through python simulations to observe the system's characteristics. The agent will explore
specific paths to get information. Then, the agent uses this information in the exploitation to
choose the best path for branching lanes. The agent will take action using greedy epsilon.
Therefore, it is essential to get the best level of learning for agents to bring efficiency in taking
steps.

2. METHODS

2.1. Reinforcement Learning

As part of machine learning methods, reinforcement learning (RL) [4-5] has been widely
used in several disciplines to find optimal policies in an uncertain environment. Many studies
have been carried out to develop RL techniques to find optimal feedback solutions, such as
the zero-sum game problem [6] RL works by interacting with the environment. The RL
algorithm works like the human brain when making several decisions and helps to take
decisions sequentially. Figure 1. shows the interaction of agents with the environment in
taking action to maximize reward.

RL studied effective strategies for agents from experimental trials and received feedback.
With an optimal design, agents can actively adapt to the environment to maximize future
rewards. The agent can remain in one of the many states (s ∈ S) in the background and choose
to take action (a ∈ A) to move from one state to the next. The state where the agent will arrive
is determined by the transition probability between states (P). After the action is taken, the
environment rewards (r ∈ R) as feedback. In this study, state (s) is the location, activity (a) is
the action (movement) that must be taken, and the reward (r) is the initial value given when
the move occurs.

https://doi.org/10.17509/coelite.v1i1.43795

3 | Journal of Computer Engineering, Electronics and Information Technology, Vol. 1 Issue 1, April 2022 Page 01-10

DOI: https://doi.org/10.17509/coelite.v1i1.43795
p- ISSN 2829-4157 e- ISSN 2829-4149

Figure 1. Interaction of agent with the environment.

In defining the reward function and transition probability. If the model is known, it means
planning with perfect information, i.e., doing model-based RL. We can find the optimal
solution with Dynamic Programming (DP) when we fully see the environment. However, if the
model is unknown, that means learning with incomplete information, i.e., doing RL model-
free or learning the model explicitly as part of the algorithm.

The model describes the environment, and we can study or infer how the environment will
interact with models and provide feedback to agents. This model has two main parts, the
transition probability function P and the reward function R. In Equation [1], the transition
function P records the transition probability from state (s) to (s') after performing an action
and obtaining (a) temporary reward (r).

𝑃(𝑠′, 𝑟|𝑠, 𝑎)=ℙ[𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (1)

Thus, the transition function between states can be defined in Equation [2] as a function
of P(s′,r|s,a).

𝑃𝑠𝑠′
𝑎 = 𝑃(𝑠′|𝑠, 𝑎) = ℙ[𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = ∑ 𝑃(𝑠′, 𝑟|𝑠, 𝑎)

𝑟∈𝑅

 (2)

And the reward function R in Equation [3] predicts the next reward based on an action. The
agent's only goal is to maximize the total reward he receives in the long run. Therefore, this
reward function is important in mapping each state in the environment to a numerical
reward.

𝑅(𝑠, 𝑎) = 𝔼[𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = ∑ 𝑟

𝑟∈𝑅

∑ 𝑃(𝑠′, 𝑟|𝑠, 𝑎)

𝑟∈𝑅

 (3)

2.2. Q-Learning

In defining the reward function and transition probability. If the model is known, it means
planning with perfect information, i.e., doing model-based RL. We can find the optimal
solution with Dynamic Programming (DP) when we fully see the environment. However, if the
model is unknown, that means learning with incomplete information, i.e., doing RL model-
free or learning the model explicitly as part of the algorithm.

Q-learning is one of the important breakthroughs in reinforcement learning, which is the
development of the Temporal Difference algorithm introduced by Watkins in 1989 [7-8] but
The Q learning algorithm in its early use is flawed in several aspects and its application is
limited [9]. Nowadays, some improved method of Q-Learning which combine with the Deep

https://doi.org/10.17509/coelite.v1i1.43795

Fikry et al., Analysis of Model-Free Reinforcement Learning Algorithm for Target Tracking | 4

DOI: https://doi.org/10.17509/coelite.v1i1.43795

p- ISSN 2829-4157 e- ISSN 2829-4149

Learning method and named Deep Q-Learning and has been implemented in robotic
application [10-12]. The Q in q-learning stands for quality, which indicates how useful a given
action is in getting rewards in the future. Equation [4] below is in the form of the Q-learning
formula.

𝑄(𝑆𝑡, 𝐴𝑡)←𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼(𝑅𝑡+1 + 𝛾 𝑚𝑎𝑥𝑎∈𝐴𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)) (4)

Q-learning takes action with the highest reward because Q-learning does not use a
behavior policy to select the additional action At+1. Instead, estimate the expected future
return in the update rule as max A Q (St+1, A). The max operator used follows a greedy policy.
Q-Learning will converge to the optimal solution assuming that, after generating experience
and training, it switches to a greedy policy. In Equation [4], St is state S at time t, At which is
action A at time t, while St+1 is the next state which will be the target of movement, and
action At+1 and reward Rt+1. Therefore, the transition probability function P and the reward
function R affect the next reward that will be obtained. We define the set of states S as {1, 2,
…, 40} which means we have 40 location points, the group of actions A {up, down, left, right}
which means that the possible moves are up, down, left, right, while for the positive R reward
while {1, 10, 100} and the negative R reward while {-1, -10, -100} [13-20].

2.3. System Performance

The flow of system performance is shown in Figure 2. We will first create a table of n
columns and m rows, where n is the number of actions and m is the number of states. Then
assign zero values to all columns and rows. In the next step, we will select action an in state
(s) based on the q-table, but as mentioned earlier, at the start, all values are 0. So, we use the
greedy epsilon method to select actions randomly (up, down, left, right).

Figure 2. System performance scenario using Q-learning.

Q-Table Initialization

Choose Action

Take Action

Measuring Reward

Update Q-Table

https://doi.org/10.17509/coelite.v1i1.43795

5 | Journal of Computer Engineering, Electronics and Information Technology, Vol. 1 Issue 1, April 2022 Page 01-10

DOI: https://doi.org/10.17509/coelite.v1i1.43795
p- ISSN 2829-4157 e- ISSN 2829-4149

The system will execute the chosen action based on the greedy epsilon. After the move is
obtained, the rewards and results are observed, then update the Q(s, a) function according
to Equation [4]. After that, we will return to step two to do the next round until the condition
stops. Table Q helps us find the best action in each state, and this is useful for maximizing the
expected reward by choosing the best of all possible activities. Q(s, a) returns the expected
future reward of the action on that state. When the q-table is ready, the agent will exploit the
environment and take better steps.

3. RESULTS AND DISCUSSION

Figure 3. shows that when the agent moves, the agent will learn the best path to the end
of the sidewalk through the reward function. Agent (A) starts at position (1,1). Sidewalks
consist of rows and columns, not sidewalks denoted by a line (-). Obstacles (x) and Product
(o) are placed randomly.

Figure 3. Location of sidewalk, obstacles and product points.

In this case, the state is a collection of locations, and actions are moves that the agent can
perform. The state-transition function is the probability of an agent moving from one state to
another through several actions. As an algorithm for learning with incomplete information, q-
learning is chosen in this study for the application of RL, which is used to train agents in the
environment. When q-learning is applied, we create a matrix that follows the form [state,
action] and assigns an initial value (q-value) of zero. We then update and store the q-value
after each round. The matrix, called q-table, becomes a reference table for agents to choose

https://doi.org/10.17509/coelite.v1i1.43795

Fikry et al., Analysis of Model-Free Reinforcement Learning Algorithm for Target Tracking | 6

DOI: https://doi.org/10.17509/coelite.v1i1.43795

p- ISSN 2829-4157 e- ISSN 2829-4149

the best action based on the q-value. The state values for each possible action are entered
into the q-table. The most significant matter is obtained according to the action that will give
the maximum value from the next step.

We will train agents on each module and combine them linearly. The selected action is
determined by the greedy method; the agent will use the appropriate q-table to choose the
action with the maximum expected value. However, the steps are not deterministic, so it is
possible that the agent will not initially take the best move for a given state to encourage
exploration. The sidewalk module is trained to give positive rewards to agents when they
reach the sidewalk's end and give them negative rewards when they move out of the
sidewalk. In the obstacles module, the agent has a window with 3×3 dimensions. If the object
is in the window in a specific state, the agent will get punishment based on the reward
function based on the distance between (0 – 1). With this, if the agent is outside the sidewalk
and is in window obstacles, the negative value obtained is even greater. It may result in the
agent starting training again from the beginning. The opposite happens if the agent is in the
product window in a particular state, the agent will get a reward based on the distance-based
reward function (0 – 1).

Modules are trained with various learning rates and rewards. Learning rate determines the
extent to which information can override old details. Figure 4. shows the last reward for each
module in each training round. Figure 5. is a heatmap of the q-table on the sidewalk module
for the “up” action. The darker areas show a lower q-value, while the lighter areas show a
higher q-value. We display a heatmap from the q-table with the three highest learning rates
for each module. Figure 5. shows that agents are learning to stay away from the sidewalk.

Figure 4. The last reward for each module.

https://doi.org/10.17509/coelite.v1i1.43795

7 | Journal of Computer Engineering, Electronics and Information Technology, Vol. 1 Issue 1, April 2022 Page 01-10

DOI: https://doi.org/10.17509/coelite.v1i1.43795
p- ISSN 2829-4157 e- ISSN 2829-4149

Figure 5. Q-table on the sidewalk module.

Furthermore, the obstacle module is trained with varying alpha values and rewards after
1000 training rounds. Figure 6. is a heatmap of the Q-table for the obstacle module for the
“up” action. Figure 6. shows that the agent is learning to avoid obstacles.

Figure 6. Q-table on the obstacle module.

Finally, the product module is trained on various alpha values and rewards after 1000
training rounds, and can be seen in Figure 7.

https://doi.org/10.17509/coelite.v1i1.43795

Fikry et al., Analysis of Model-Free Reinforcement Learning Algorithm for Target Tracking | 8

DOI: https://doi.org/10.17509/coelite.v1i1.43795

p- ISSN 2829-4157 e- ISSN 2829-4149

Figure 7. Q-table on the product module.

Figure 8. is showing a heatmap of the linear combinations of the three q-tables for the
“up” action.

Figure 8. Q-Table combination module.

To balance exploration and exploitation during training, we used the epsilon-greedy
method. We give a value of epsilon=0.9, which means with a probability of 0.9, an action is
chosen randomly from the action space. With a probability of 0.1, an effort is selected greedily
based on argmax(Q). The highest final reward is obtained with a learning rate of 0.8 in 500
rounds. More training provides more learning opportunities for agents, and this is the more
stable the reward value will be. In other words, the agent is getting better at tracking,
determining the action to the next state to get a positive reward.

https://doi.org/10.17509/coelite.v1i1.43795

9 | Journal of Computer Engineering, Electronics and Information Technology, Vol. 1 Issue 1, April 2022 Page 01-10

DOI: https://doi.org/10.17509/coelite.v1i1.43795
p- ISSN 2829-4157 e- ISSN 2829-4149

4. CONCLUSION

Q-learning is a practical algorithm for RL problems with incomplete information. This works
best when the agent has a limited number of actions to perform in an environment with
random conditions. Moreover, it effectively divides the problem into separate modules that
can be adjusted and linearly combined. The agent will learn more to get the best reward with
the higher learning rate value used. Still, the risk that arises is the possibility of error also
increasing because it affects the agent to ignore previous knowledge to explore options. The
higher the epsilon value, it allows the agent to expand his knowledge for each action, which
leads to long-term benefits, increases the accuracy of value estimates, and allows the agent
to make more informed decisions in the future, but may result in reduced chances of getting
the most rewards. RL with the q-learning algorithm can also be used to determine the shortest
route or optimize the movement of the robot in collecting rewards and avoiding certain states
that can result in losses. The knowledge obtained from this research is expected to be a
suggestion for system improvement or identification of influential variables related to
tracking.

5. AUTHORS’ NOTE

The authors declare that there is no conflict of interest regarding the publication of this
article. Authors confirmed that the paper was free of plagiarism.

6. REFERENCES

[1] Goli, A., Khademi-Zare, H., Tavakkoli-Moghaddam, R., Sadeghieh, A., Sasanian, M., and

Malekalipour-Kordestanizadeh, R. (2021). An integrated approach based on artificial
intelligence and novel meta-heuristic algorithms to predict demand for dairy products:
a case study. Network: Computation in Neural Systems, 32(1), 1-35.

[2] Sivaram, M., Batri, K., Amin Salih, M., and Porkodi, V. (2019). Exploiting the local optima
in genetic algorithm using tabu search. Indian Journal of Science and Technology, 12(1),
1-13.

[3] Yang, B., Guo, L., Guo, R., Zhao, M., and Zhao, T. (2020). A novel trilateration algorithm
for RSSI-based indoor localization. IEEE Sensors Journal, 20(14), 8164-8172.

[4] Botvinick, M., Ritter, S., Wang, J. X., Kurth-Nelson, Z., Blundell, C., and Hassabis, D.
(2019). Reinforcement learning, fast and slow. Trends in Cognitive Sciences, 23(5), 408-
422.

[5] Dabbaghjamanesh, M., Moeini, A., and Kavousi-Fard, A. (2020). Reinforcement
learning-based load forecasting of electric vehicle charging station using q-learning
technique. IEEE Transactions on Industrial Informatics, 17(6), 4229-4237.

[6] Faruk, A., and Cahyono, E.S. (2018). Prediction and classification of low birth weight
data using machine learning techniques. Indonesian Journal of Science and
Technology, 3(1), 18-28.

[7] Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A. (2020). Monte carlo gradient
estimation in machine learning. The Journal of Machine Learning Research, 21(1), 5183-
5244.

[8] Netrapalli, P. (2019). Stochastic gradient descent and its variants in machine
learning. Journal of the Indian Institute of Science, 99(2), 201-213.

[9] Jang, B., Kim, M., Harerimana, G., and Kim, J. W. (2019). Q-learning algorithms: a
comprehensive classification and applications. IEEE Access, 7(1), 133653-133667.

https://doi.org/10.17509/coelite.v1i1.43795

Fikry et al., Analysis of Model-Free Reinforcement Learning Algorithm for Target Tracking | 10

DOI: https://doi.org/10.17509/coelite.v1i1.43795

p- ISSN 2829-4157 e- ISSN 2829-4149

[10] Peng, Z., Luo, R., Hu, J., Shi, K., Nguang, S. K., and Ghosh, B. K. (2021). Optimal tracking
control of nonlinear multiagent systems using internal reinforce q-learning. IEEE
Transactions on Neural Networks and Learning Systems, 33(8), 4043-4055.

[11] Liu, R., Nageotte, F., Zanne, P., de Mathelin, M., and Dresp-Langley, B. (2021). Deep
reinforcement learning for the control of robotic manipulation: a focused mini-
review. Robotics, 10(1), 1-22.

[12] Zhang, T., and Mo, H. (2021). Reinforcement learning for robot research: a
comprehensive review and open issues. International Journal of Advanced Robotic
Systems, 18(3), 1-22.

[13] Jiang, S., Huang, Z., and Ji, Y. (2020). Adaptive UAV-assisted geographic routing with q-
learning in vanet. IEEE Communications Letters, 25(4), 1358-1362.

[14] Jiang, L., Huang, H., and Ding, Z. (2019). Path planning for intelligent robots based on
deep q-learning with experience replay and heuristic knowledge. IEEE/CAA Journal of
Automatica Sinica, 7(4), 1179-1189.

[15] Dittrich, M. A., and Fohlmeister, S. (2020). Cooperative multi-agent system for
production control using reinforcement learning. CIRP Annals, 69(1), 389-392.

[16] Li, Q., Meng, X., Gao, F., Zhang, G., and Chen, W. (2021). Approximate cost-optimal
energy management of hydrogen electric multiple unit trains using double q-learning
algorithm. IEEE Transactions on Industrial Electronics, 69(9), 9099-9110.

[17] Vimal, S., Khari, M., Crespo, R. G., Kalaivani, L., Dey, N., and Kaliappan, M. (2020). Energy
enhancement using multiobjective ant colony optimization with double q-learning
algorithm for IoT based cognitive radio networks. Computer Communications, 154(1),
481-490.

[18] Boussakssou, M., Hssina, B., and Erittali, M. (2020). Towards an adaptive e-learning
system based on q-learning algorithm. Procedia Computer Science, 170(1), 1198-1203.

[19] Genders, W., and Razavi, S. (2019). Asynchronous n-step q-learning adaptive traffic
signal control. Journal of Intelligent Transportation Systems, 23(4), 319-331.

[20] Qiu, C., Yao, H., Yu, F. R., Xu, F., and Zhao, C. (2019). Deep q-learning aided networking,
caching, and computing resources allocation in software-defined satellite-terrestrial
networks. IEEE Transactions on Vehicular Technology, 68(6), 5871-5883.

https://doi.org/10.17509/coelite.v1i1.43795

