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A B S T R A C T   A R T I C L E   I N F O 

Understanding the contribution of features in DNA sequence 
classification is crucial for enhancing model interpretability 
and reliability. This study proposes a Hybrid Explainable AI 
(XAI) approach that integrates Feature Importance (FI), 
Permutation Importance (PI), and Local Interpretable Model-
Agnostic Explanations (LIME) to analyse the most influential 
features in a Random Forest classifier. FI is utilized to 
determine the most significant features contributing to the 
model, while PI validates their impact by assessing 
performance changes when features are shuffled. 
Additionally, LIME provides local explanations, offering 
insight into how specific feature values affect classification 
decisions. Experimental results on a publicly available DNA 
sequence dataset reveal a strong correlation between FI and 
PI rankings, validating the stability of key features such as 
A84, A89, and A92. LIME further enhances interpretability by 
highlighting individual instance contributions, reinforcing the 
relevance of specific nucleotide positions in sequence 
classification. This hybrid approach provides a more 
comprehensive understanding of feature importance, 
improving trust and transparency in DNA sequence 
classification models.  
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1. INTRODUCTION 

The classification of DNA sequences plays a crucial role in bioinformatics, particularly in 
identifying genetic variations, disease-associated mutations, and evolutionary relationships 
[1]. With the growing availability of genomic data, machine learning techniques have been 
increasingly applied to improve classification accuracy [2]. However, while machine learning 
models such as Random Forest (RF), Support Vector Machines (SVM), and Deep Learning 
architectures have shown remarkable performance, their black-box nature limits 
interpretability, making it difficult for researchers to understand the factors influencing 
predictions [3]. This lack of transparency poses challenges in critical applications such as 
genetic disease prediction and mutation impact analysis, where interpretability is essential 
for validating model decisions [4].  

To address this issue, Explainable Artificial Intelligence (XAI) has emerged as a framework 
to interpret complex machine learning models [5]. Several XAI techniques have been 
introduced to provide insights into model behaviour, including Feature Importance (FI), 
Permutation Importance (PI), and Local Interpretable Model-Agnostic Explanations (LIME) [6]. 
FI is a widely used approach that measures the contribution of each feature based on decision 
trees' splits, providing a global explanation of feature relevance [7]. However, FI may be 
biased toward correlated features, necessitating Permutation Importance (PI) as a validation 
method. PI quantifies feature impact by measuring performance degradation when a 
feature's values are randomly shuffled, offering a more robust validation mechanism for 
identifying key features [8]. While both FI and PI provide global feature explanations, they do 
not provide instance-level interpretability. 

To complement these global explanations, LIME (Local Interpretable Model-Agnostic 
Explanations) has been introduced to provide localized feature insights by perturbing input 
data and fitting a surrogate model to approximate local decision boundaries [9]. LIME has 
been effectively applied in biomedical research to understand mutation impact, disease 
classification, and sequence pattern contributions [10]. However, its application in DNA 
sequence classification remains limited, and no previous studies have integrated FI, PI, and 
LIME into a hybrid explainability framework for genetic data analysis. 

Several studies have focused on applying individual explainability techniques to machine 
learning models for genomic analysis. Zhou et al. [11] and Zubair et al.  [12] explored FI in 
genomic classification, demonstrating its effectiveness in ranking influential features. Cantor  
et al. [13] highlighted PI’s ability to validate feature significance, making it more reliable for 
high-dimensional biological datasets. Meanwhile, Labory et al. [14] introduced LIME as a 
method for explaining predictions at an instance level, which was later adapted in genomic 
research for mutation-based classification Puiu et al., [15] and genomic sequence 
interpretation Lee et al.[16]. However, the existing literature lacks a comprehensive hybrid 
approach that integrates FI, PI, and LIME into a unified framework. 

This study proposes a Hybrid Explainable AI (XAI) approach for DNA sequence classification 
by integrating Feature Importance (FI), Permutation Importance (PI), and LIME. The proposed 
framework aims to: 

1. Determine the most influential genomic features using FI, 
2. Validate feature significance through PI, and 
3. Provide local instance-based explanations with LIME. 
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By combining these three explainability techniques, this research enhances 
interpretability, robustness, and transparency in machine learning-based DNA classification, 
enabling a more reliable understanding of feature contributions and their impact on model 
predictions. The results of this hybrid approach will not only improve model trustworthiness 
but also contribute to advancing interpretable AI solutions in bioinformatics and genomic 
research. 

2. METHODS 
This section describes the methodology used in this study, which follows a structured 

pipeline consisting of data collection, preprocessing, model training, and explainability 
analysis. The workflow begins with data collection, where a DNA sequence dataset is obtained 
and prepared for machine learning. The data preprocessing phase includes feature-target 
separation, normalization, and data splitting to ensure optimal model performance. The 
processed data is then utilized in the model training phase, where a machine learning 
classifier is trained to predict DNA sequence classifications. 

Following model training, the explainability analysis is performed using a hybrid 
Explainable AI (XAI) framework comprising Feature Importance (FI), Permutation Importance 
(PI), and Local Interpretable Model-Agnostic Explanations (LIME). FI identifies globally 
important features by assessing their impact on model decisions, while PI validates the 
robustness of these feature contributions by measuring performance degradation when 
features are permuted. Lastly, LIME provides instance-level insights, explaining how individual 
features contribute to specific predictions. 

The methodology is visualized in Figure 1, which outlines the main steps involved in this 
research. The subsequent subsections provide a detailed description of each stage, starting 
with data collection. 

 

 

Figure 1. Propose Method. 

 

2.1. Data Collection 

The dataset used in this study was obtained from Kaggle, containing 3,187 DNA sequences. 
Each instance in the dataset represents a DNA segment, with features encoding nucleotide 
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presence in specific positions. The dataset consists of 180 feature columns representing 
nucleotide encoding and one target column (class), which categorizes DNA sequences into 
distinct classes. 

To facilitate the explainability analysis, we process the dataset by encoding the nucleotide 
sequences into numerical values. Each feature represents a specific nucleotide position in the 
sequence, encoded as a binary value. The target column (class) denotes the classification of 
the DNA sequence into different biological categories. A summary of the dataset features is 
provided in Table 1. 

Table 1. Feature Description of the DNA Dataset  

Feature Description 
A0 - A179 Encoded nucleotide presence (binary) 
class DNA sequence classification label 

This dataset serves as the foundation for training a classification model and conducting 
explainability analysis using Feature Importance (FI), Permutation Importance (PI), and Local 
Interpretable Model-agnostic Explanations (LIME). 

2.2. Data Preprocessing 

Data preprocessing is a crucial step to ensure that the dataset is properly formatted and 
optimized for training machine learning models [17]. In this study, the preprocessing phase 
consists of three main steps: Feature Target Separation, Feature Normalization, and Data 
Splitting. The first step, Feature Target Separation, involves isolating the features from the 
target variable. All DNA sequence attributes serve as input features, while the classification 
label represents the target variable. This separation ensures a clear distinction between input 
and output data for the machine learning model. 

Next, Feature Normalization is performed to standardize the scale of the features. Min-
Max Scaling is applied to transform all feature values into a normalized range between 0 and 
1, ensuring consistent feature representation. This normalization process enhances model 
stability and improves training convergence. The final step, Data Splitting, partitions the 
dataset into three subsets: Training Set, Validation Set, and Test Set. The training set is used 
to train the model, the validation set is used for hyperparameter tuning, and the test set 
evaluates model performance on unseen data. The data is split using a 70% training, 15% 
validation, and 15% testing ratio while maintaining class distribution using stratified sampling. 
Through this preprocessing pipeline, the dataset is structured and optimized for training, 
ensuring better model generalization and improved classification performance.   

2.3. Model Training 

The model training phase involves developing a classification model to predict DNA 
sequence categories based on extracted features. In this study, a Random Forest Classifier 
was chosen due to its robustness and capability to handle high-dimensional data effectively  
[18]. The training process follows these steps: 

1. Model Initialization: A Random Forest classifier is initialized with optimized 
hyperparameters. 

2. Model Training: The classifier is trained using the processed dataset. 
3. Performance Evaluation: The trained model is assessed using standard classification 

metrics. 
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A Random Forest Classifier consists of multiple decision trees, where each tree contributes to 
the final prediction through majority voting. The model's prediction function can be 
mathematically expressed as: 

                                                          𝑦̂ =
1

𝑁
∑𝑁

𝑖=1 𝑓𝑖(𝑋)                     (1)                                                      

Where (𝑦̂) Is the final predicted class? (𝑁) Is the number of decision trees and (𝑓𝑖(𝑋)) Is the 
prediction from the (𝑖)-th decision tree. The training process aims to minimize the 
classification error by optimizing the splitting criteria in each tree, typically using the Gini 
impurity: 

                                                        𝐺 = 1 − ∑𝐶
𝑖=1 𝑝𝑖

2                             (2)                                                        

Where (𝐺) Is the Gini impurity, (𝐶) Is the number of classes and (𝑝𝑖) Is the probability of a 
sample belonging to a class(𝑖). 

2.4. Explainability Analysis  

To enhance the interpretability of the classification model, we employ a comprehensive 
Explainability Analysis framework that integrates Feature Importance (FI), Permutation 
Importance (PI), and Local Interpretable Model-Agnostic Explanations (LIME). These 
techniques provide a deeper understanding of how features contribute to the model's 
decision-making process [19].   

Feature Importance (FI) 

Feature Importance quantifies the contribution of each feature to the model’s predictive 
performance by measuring the reduction in impurity across decision trees [20]. The 
importance of a feature (𝑓𝑖) A decision tree model is given by: 

                                                    𝐹𝐼(𝑓𝑖) = ∑𝑡∈𝑇 𝐼𝑡 ⋅ 𝑤𝑡      (3) 

Where ( 𝑇 ) represents all nodes in the decision trees where (𝑓𝑖) is used, (𝐼𝑡) Is the impurity 
reduction at the node ( 𝑡 ) and (𝑤𝑡) Is the weighted number of samples that reach the node 
( 𝑡 ). 

 

Permutation Importance (PI) 

Permutation Importance is a model-agnostic technique that validates feature relevance by 
randomly shuffling individual features and measuring the corresponding decrease in model 
accuracy. The PI score for a feature (𝑓𝑖) Is computed as: 

                                          𝑃𝐼(𝑓𝑖) =
1

𝑁
∑𝑁

𝑗=1 [𝐴 − 𝐴𝑓𝑖

(𝑗)
]      (4) 

Where ( 𝐴 ) Is the baseline accuracy of the trained model? (𝐴𝑓𝑖

(𝑗)
)Is the accuracy after 

randomly permuting the feature? (𝑓𝑖) and ( 𝑁 ) Is the number of iterations. Higher PI scores 
indicate a greater impact on classification performance when the feature is shuffled, thus 
validating its importance. 
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Local Interpretable Model-Agnostic Explanations (LIME) 

LIME generates local surrogate models to approximate the behaviour of the classifier for 
individual predictions. It perturbs the input data and learns a linear approximation around a 
given instance.( 𝑥 ). The explanation model is given by: 

𝑓(𝑥) =𝑎𝑟𝑔 𝑎𝑟𝑔 𝐿  (𝑓, 𝑔, 𝜋𝑥) + 𝛺(𝑔)      (5) 

Where ( 𝑔 ) is the interpretable model (e.g., a linear regression model), (𝐿(𝑓, 𝑔, 𝜋𝑥))Is the 
loss function ensuring approximations ( 𝑓 ) locally, (𝜋𝑥)represents the proximity measure 
defining locality and (𝛺(𝑔))enforces complexity constraints on ( 𝑔 ) For better 
interpretability. 

By integrating FI, PI, and LIME, this explainability framework provides both global feature 
significance (FI, PI) and local interpretability (LIME), offering a transparent and accountable 
explanation for DNA sequence classification. 

3. RESULTS AND DISCUSSION 
3.1. Result 

Feature Importance (FI) was employed to determine the most influential features in 
predicting DNA sequence classifications. The model utilized a Random Forest classifier to rank 
features based on their contribution to the classification task. Table 2 presents the top 15 
most important features, while Figure 2 visualizes their relative importance scores. The 
results indicate that feature A89 holds the highest importance score of 0.091248, followed by 
A84 and A92, with scores of 0.080648 and 0.064267, respectively. Features A104 and A99 also 
show notable influence, suggesting their relevance in distinguishing DNA sequence 
classifications. The remaining features exhibit progressively lower importance scores but still 
contribute to the model’s performance. 

These findings provide a global understanding of how different features impact the 
classification model. However, to validate these results and ensure their robustness, we 
extend our analysis by incorporating Permutation Importance (PI) in the subsequent section. 

Table 2. Top 15 most important features. 

Rank Feature Importance Score 

1 A89 0.091248 

2 A84 0.080648 

3 A92 0.064267 

4 A104 0.061665 

5 A99 0.037118 

6 A82 0.033560 

7 A88 0.016974 

8 A83 0.016850 

9 A93 0.015391 

10 A87 0.015057 

11 A95 0.014192 

12 A81 0.013620 

13 A85 0.013004 

14 A96 0.011621 
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15 A86 0.010789 

Figure 2 illustrates the Feature Importance distribution, highlighting the relative significance 
of each feature in the model. 

 

Figure 2. Importance Score 

To validate the results obtained from Feature Importance (FI), we employed Permutation 
Importance (PI) as an additional validation method. PI measures the impact of each feature 
by shuffling its values and observing the drop in model performance. This method provides a 
robust verification of the relative importance of features. The results presented in Table 3 
and visualized in Figure 3 confirm the consistency between FI and PI rankings. The top three 
features remain unchanged, with A84, A89, and A92 maintaining their high importance 
scores. However, some variations can be observed in lower-ranked features, where A104 and 
A93 show slightly different rankings. The standard deviation values indicate the stability of 
feature contributions, with lower deviations implying more consistent impact. 

Table 3. Top 15 Permutation Importance Scores. 

Rank Feature 
Importance 

Score 
Standard Deviation 

1 A84 0.098536 0.009516 

2 A89 0.092050 0.013065 

3 A92 0.068410 0.007942 

4 A104 0.048536 0.009013 

5 A93 0.017573 0.004879 

6 A99 0.015900 0.005056 

7 A95 0.010460 0.005038 
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Rank Feature 
Importance 

Score 
Standard Deviation 

8 A83 0.008368 0.004184 

9 A94 0.007741 0.003110 

10 A87 0.005439 0.002838 

11 A96 0.004603 0.002440 

12 A74 0.004184 0.001871 

13 A103 0.003347 0.003268 

14 A85 0.003347 0.002510 

15 A88 0.003138 0.003771 

Overall, the validation through PI strengthens the reliability of the feature importance 

findings, confirming that the identified key features significantly contribute to the 

classification of DNA sequences. Figure 3 depicts the Permutation Importance analysis, 

highlighting the top 15 most influential features and their variations. 

 

Figure 3. Permutation Importance Score 

To complement the Feature Importance (FI) and Permutation Importance (PI) analyses, we 
conducted a Local Interpretable Model-Agnostic Explanations (LIME) analysis. LIME provides 
an interpretable, instance-based explanation by approximating the model's decision 
boundary with a simpler, interpretable model. 

Figure 4 presents the local explanation for a single test sample. The horizontal bars 
represent the contribution of each feature to the classification decision. The red bars indicate 
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negative contributions (reducing the probability of a specific class), while the green bars 
denote positive contributions (increasing the probability of the predicted class). 

● A84 and A89 exhibit the highest negative influence on the classification outcome, 
indicating their strong contribution to shifting the prediction away from certain DNA 
classes. 

● Conversely, A83 and A82 show significant positive contributions, reinforcing the 
model’s classification decision. 

● Other features such as A81, A88, and A86 play minor but noticeable roles in adjusting 
the classification outcome. 

 

Figure 4. Local Explanation For Class IE 

These results further validate the global Feature Importance (FI) and Permutation 
Importance (PI) findings by providing an instance-based justification for the significance of 
key features. This combination of global and local explainability techniques ensures a 
comprehensive understanding of the DNA sequence classification model. 

4. CONCLUSION 

This study presented a Hybrid Explainable AI Approach for DNA sequence classification, 
integrating Feature Importance (FI), Permutation Importance (PI), and Local Interpretable 
Model-Agnostic Explanations (LIME) to enhance the interpretability of machine learning 
predictions. The results demonstrated that features A84, A89, and A92 were consistently 
identified as the most significant across multiple explainability techniques. Feature 
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Importance (FI) provided a global understanding of the dominant features influencing model 
decisions, while Permutation Importance (PI) validated their impact on classification 
performance. Furthermore, LIME offered localized explanations, allowing a more detailed 
analysis of individual predictions, which is crucial in understanding how specific DNA 
sequence characteristics contribute to classification outcomes. The combination of these 
explainability methods ensures a transparent and interpretable machine learning model, 
which is essential for applications in genomic research and biological analysis. 

 
Although this approach offers valuable insights, there are several directions for future 

work. First, exploring more advanced models such as deep neural networks or Transformer-
based architectures could improve classification performance while maintaining 
interpretability. Additionally, integrating domain-specific feature engineering may enhance 
feature representation and improve model accuracy. Further research can also investigate 
additional explainability techniques, such as SHAP (Shapley Additive Explanations) and 
counterfactual analysis, to gain deeper insights into feature contributions and interactions. 
Expanding the dataset with more diverse DNA sequences can improve the model’s 
generalization ability, making it more robust for practical applications. Finally, applying this 
explainability framework in genomic medicine, disease prediction, and mutation analysis 
could extend its impact beyond classification tasks, contributing to advancements in 
computational biology and precision medicine.   
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