
1Journal of Computer Engineering, Electronics and Information Technology (COELITE) 4(1) (2025) 51-60

Digital Data Security Using a Combination of Base64

Encoding, Rail Fence Cipher, and GZIP Compression

Deden Pradeka1*, Zahra Khaerunnisa2, Syifa Aqila Humaira3, Aidha Salsa Billa4, Murnawan 5, Budiman6

1,2,3,4Department of Computer Engineering, Universitas Pendidikan Indonesia, Indonesia
5Department of Information Systems, Universitas Widyatama, Indonesia

6Department of Information System, Universitas Informatika dan Bisnis Indonesia, Indonesia

Correspondence E-mail: dedenpradeka@upi.edu

A B S T R A C T A R T I C L E I N F O

Digital data security is essential in protecting sensitive
information in the current information era. This research
implements a hybrid security approach by combining Base64
encoding, the Rail Fence cipher, and GZIP compression.
Base64 encoding converts digital files into a standardized
text format for easier processing, while the Rail Fence cipher
applies transposition to further scramble the encoded data,
enhancing confidentiality. GZIP compression reduces file size
while adding a layer of complexity, making unauthorized
data recovery more difficult. The experiment involved ten
trials using files with extensions such as XLSX, DOCX, JPG,
PDF, and PPTX. Pearson correlation analysis revealed
coefficients close to 0.00 or slightly negative, indicating no
significant correlation between plaintext and ciphertext,
which signifies strong data randomness and security.
Additionally, GZIP compression achieved an average file size
reduction of approximately 1 KB, although some smaller files
showed minimal compression effects. Overall, the combined
method effectively enhances both data security and storage
efficiency.

© 2025 Universitas Pendidikan Indonesia

Article History:
Submitted/Received 22 Mar 2025
First Revised 29 Mar 2025
Accepted 30 Mar 2025
First Available online 1 Apr 2025
Publication Date 1 Apr 2025

Keyword:
Data Security, Base64 Encoding,
Rail Fence Cipher, GZIP
Compression, Cryptography

Journal of Computer Engineering, Electronics and
Information Technology (COELITE)

Journal homepage: https://ejournal.upi.edu/index.php/COELITE

mailto:dedenpradeka@upi.edu

Pradeka et al., Digital Data Security Using a Combination of Base64 Encoding, Rail Fence Cipher … |52

DOI: https://doi.org/10.17509/coelite.v4i1.82498

p- ISSN 2829-4157 e- ISSN 2829-4149

1. INTRODUCTION

The development of information technology has had a significant impact on the increase
in the flow of digital data transmitted over the internet. This intensive data exchange presents
its challenges in maintaining the security and privacy of sensitive information from various
threats such as theft, manipulation, or data breaches [1]. This issue is crucial given the
increasing number of data security breaches, which result in both material and non-material
losses for individuals and institutions.

Various data protection techniques have been developed to safeguard digital information,
including encryption, encoding, and data compression methods. However, relying on a single
technique alone is sometimes insufficient to ensure optimal security. An integrative solution
that combines multiple methods is needed to strengthen security layers against digital data
threats. For instance, Base64 encoding has a weakness due to the availability of many online
generators [2], making it necessary to further scramble the encoded data using the Rail Fence
Cipher method [3]. From another perspective, handling large files can be challenging for
transmission or storage, making GZIP compression a suitable alternative [4].

This study proposes a solution that combines three methods: Base64 Encoding, Rail Fence
Cipher, and GZIP Compression. Base64 Encoding is used to convert files into a standardized
text format, making them more flexible for encryption processing. The Rail Fence Cipher
provides additional security through a simple yet effective transposition technique to
obfuscate the original message content. Finally, GZIP compression reduces data size while
also making unauthorized reading more difficult due to the compression process. By
integrating these three methods, this approach is expected to enhance data security and
improve efficiency in digital data transmission.

2. METHODS

This research employs the Design and Development (D&D) research method. This method
consists of several key stages: problem identification, solution design, solution development,
and final product evaluation [5][6], You can see Figure 1.

In the initial stage, an analysis is conducted to identify the needs for digital data security
and assess the weaknesses of existing methods. Subsequently, the design of the combination
of Base64 Encoding, Rail Fence Cipher, and GZIP Compression is systematically structured.
The development stage involves implementing this design into an application or prototype
that can be tested directly.

Finally, the evaluation process is carried out through a series of tests that assess security
effectiveness, file size efficiency, and data processing time. The evaluation results will be used
to measure the success of the proposed solution in enhancing digital data security and
provide recommendations for future improvements.

Figure 1. Design and Development (D&D) [7]

2.1. Data Security

Data security is a set of measures, practices, and technologies used to protect digital
information from threats such as theft, damage, or unauthorized access [8]. This includes the

https://doi.org/10.17509/coelite.v0i0.00000

53 | Journal of Computer Engineering, Electronics and Information Technology, Vol. 4 Issue 1, April 2025 Page 51-60

DOI: https://doi.org/10.17509/coelite.v4i1.82498
p- ISSN 2829-4157 e- ISSN 2829-4149

use of encryption to maintain confidentiality, user authentication to ensure that only
authorized individuals can access information, and the implementation of firewalls and
antivirus software to protect against cyber threats such as malware or ransomware.

The primary goal of data security is to preserve data integrity, confidentiality, and
availability, thereby reducing the risks of information leaks, misuse of personal data, and
protecting user privacy. Due to the rapid advancement of information technology and
increasingly complex threats, the implementation of strict data security policies and
educating users on safe data management practices has become crucial.

2.2. Cryptography

Cryptography is the science and technique of securing information by transforming original
data (plaintext) into an unreadable format (ciphertext) through the encryption process,
ensuring that only authorized parties with the secret key can revert it to its original form via
decryption [9][10].

This technique is used to protect confidentiality, integrity, and authentication, and ensure
that data is not accessed or altered by unauthorized entities during transmission or storage,
can you see in Figure 2. Modern cryptography utilizes complex algorithms, such as symmetric
encryption (which uses a single key for both encryption and decryption) and asymmetric
encryption (which employs a pair of public and private keys) to provide a high level of security
against cyber threats.

With the advancement of digital technology, cryptography has become a vital component
of data security in various aspects of life, including financial transactions, electronic
communications, and user privacy protection in the digital world.

Figure 2. Encryption and Decryption Mechanism

2.3. Data Compression

Data compression is a technique or method used to reduce the size of files or digital

information, making storage more efficient and data transmission faster [11]. This process

works by eliminating redundancy or unnecessary information, so the remaining data becomes

more compact without significantly reducing quality.

There are two main types of data compression:
1. Lossless compression, which allows the original data to be fully restored, as seen in

formats like ZIP or PNG.

https://doi.org/10.17509/coelite.v0i0.00000

Pradeka et al., Digital Data Security Using a Combination of Base64 Encoding, Rail Fence Cipher … |54

DOI: https://doi.org/10.17509/coelite.v4i1.82498

p- ISSN 2829-4157 e- ISSN 2829-4149

2. Lossy compression, which sacrifices some non-essential information to achieve a
higher compression rate, is used in formats like JPEG or MP3.

Data compression is essential in various digital applications, particularly for image, audio,
and video storage, as well as internet data transmission, to enhance efficiency, speed, and
reduce bandwidth usage.
2.4. Base64

Base64 is an encoding scheme used to convert binary data (such as image, audio, or

document files) into a text format consisting of 64 ASCII characters, making it easier to

transmit or store through text-based protocols such as email or HTTP [12], as shown in Figure

3. Base64 works by dividing data into small blocks (each 3 bytes or 24 bits) and then

converting each block into 4 ASCII characters by referring to the Base64 character table [13].

The Base64 encoding steps are as follows:
1. Take the binary data and divide it into 3-byte (24-bit) blocks.
2. Convert each 3-byte block into 4 groups of 6 bits (since 24 bits = 4 groups × 6 bits).
3. Convert each 6-bit group into a corresponding character from the Base64 table, which

consists of uppercase A-Z, lowercase a-z, digits 0-9, and the symbols + and /.
4. If the number of bytes is not a multiple of 3, padding characters ('=') are added at the

end to complete the block.
The reverse process is called Base64 decoding, which converts Base64 text back into its

original binary form by following the opposite steps. Base64 is widely used in internet data
transmission, particularly for embedding images in HTML or sending email attachments.
However, in this study, the author identifies a weakness in Base64 encoding—the availability
of numerous online encoders and decoders, which creates a security vulnerability when
someone obtains the encoded data.

Figure 3. Base64 process [14]

2.5. Rail Fence Cipher

The Rail Fence Cipher is a classical cryptographic method categorized as a transposition

cipher, which encrypts a message by altering the position or arrangement of its characters

rather than replacing them [15]. This method works by writing the text in a zig-zag pattern

across a specified number of rows and then reading it horizontally to produce the ciphertext,

in Figure 4. Rail Fence Cipher Steps:

a. Encryption:
1. Determine the number of rows (rails) to be used, for example, 3 rails.

https://doi.org/10.17509/coelite.v0i0.00000

55 | Journal of Computer Engineering, Electronics and Information Technology, Vol. 4 Issue 1, April 2025 Page 51-60

DOI: https://doi.org/10.17509/coelite.v4i1.82498
p- ISSN 2829-4157 e- ISSN 2829-4149

2. Write the message diagonally in a zig-zag pattern, moving downwards and then
upwards, repeating until all characters are placed.

3. After completing the zig-zag pattern, read the text horizontally, row by row, from top
to bottom to obtain the ciphertext.

4. Example encryption with the message "KEAMANANDATA" and 3 rails, and then the
ciphertext obtained: KMNTEAAADAAA:

Rail 1: K . . . M . . . N . . . T .
Rail 2: . E . A . A . A . D . A . A
Rail 3: . . A . . . N . . . A . . .

Figure 4. Encryption of a Message through the Rail Fence Cipher Technique

b. Decryption:
1. Determine the same number of rows (rails) used during encryption.
2. Mark the zig-zag positions where the ciphertext characters will be placed.
3. Fill the ciphertext into the marked positions horizontally.
4. Read the message diagonally in a zig-zag pattern to reconstruct the original plaintext.

With this technique, Base64-encoded information is further secured by scrambling the
character order. However, this method is relatively simple and not secure enough for critical
communications without additional encryption techniques.

2.6 Gzip (GNU zip)

Gzip (GNU zip) is a digital data compression method that uses the lossless DEFLATE

algorithm to reduce file size, making data more efficient for storage and transmission [16].

This format is widely used on web servers to accelerate data transfer over the HTTP protocol.

Steps in the Gzip Compression Process:

a. Compression (Encoding) Steps:

1. Identify Input Data:

a) The original data or file (text, images, or other files) to be compressed.

2. Apply the DEFLATE Algorithm:

b) Analyze the data to detect redundancy (repeated patterns).

c) Use the LZ77 method (pattern matching) and Huffman coding to significantly

reduce file size.

3. Store in Gzip Format:

a) The compressed data is saved with an added header and checksum for

validation during extraction.

4. Generate the Output File:

1. The resulting file has the extension .gz.

b. Decompression (Decoding) Steps:

1. Retrieve the .gz file.

2. Extract header information to validate data integrity.

3. Use the DEFLATE algorithm to restore the data to its original form without loss of

quality (lossless).

4. Recover the original file exactly as it was before compression.

2.7 Pearson Correlation

https://doi.org/10.17509/coelite.v0i0.00000

Pradeka et al., Digital Data Security Using a Combination of Base64 Encoding, Rail Fence Cipher … |56

DOI: https://doi.org/10.17509/coelite.v4i1.82498

p- ISSN 2829-4157 e- ISSN 2829-4149

The Pearson correlation, or Pearson Correlation Coefficient, is a statistical measure used
to assess the strength and direction of a linear relationship between two numerical
variables [17]. However, in cryptography, the best value is one where there is no
correlation between the plaintext and the ciphertext. This is because if there is no
correlation, it can be said that there is a random transformation from plaintext to
ciphertext, which implies enhanced security. Equation 1 presents the Pearson correlation
formula, which can be seen in equation 1. Pearson Correlation Formula:

𝑟 =
∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

√∑ (𝑥𝑖 − 𝑥)2. ∑ (𝑦𝑖 − 𝑦)2

(1)

Where𝑥𝑖 𝑎𝑛𝑑 𝑦𝑖: 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑋 𝑎𝑛𝑑 𝑌 .
Then 𝑥 𝑎𝑛𝑑 𝑦: 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑋 𝑎𝑛𝑑 𝑌.

Next, 𝑟: 𝑖𝑠 𝑡ℎ𝑒 𝑘𝑜𝑒𝑓𝑖𝑠𝑖𝑒𝑛 𝑘𝑜𝑟𝑒𝑙𝑎𝑠𝑖 𝑝𝑒𝑎𝑟𝑠𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡.
From the Pearson correlation value, the interpretation is as follows:
if r = 1, there is a perfect positive relationship (as X increases, Y also increases linearly).
if r = -1, there is a perfect negative relationship (as X increases, Y decreases linearly). And
if r = 0, here is no linear relationship between X and Y.

Table 1 provides a comprehensive interpretation of Pearson correlation coefficients,
outlining the commonly accepted thresholds used to classify the strength and direction of
relationships between variables. This framework allows researchers to evaluate the
degree of linear association observed in the data, facilitating more informed statistical
inferences and discussions within the context of empirical analysis.

Table 1. General Interpretation of Pearson Correlation Values

Value of r Interpretation

0.90 – 1.00 Very strong (positive) correlation

0.70 – 0.89 Strong (positive) correlation

0.50 – 0.69 Moderate (positive) correlation

0.30 – 0.49 Weak (positive) correlation

0.00 – 0.29 Very weak or no correlation

Negative values Same interpretation, but in the negative direction

In addition to statistical evaluation, recent advancements in cryptographic methods have
demonstrated the effectiveness of combining multiple security layers. For example, Zala and
Khan [18] proposed an integrated approach using Base64 encoding and Fernet encryption to
protect textual data more robustly. Similarly, Speidel and Manoharan [19] explored
individualized puzzle-based learning to enhance conceptual understanding of security
mechanisms. From a cybersecurity infrastructure standpoint, Finck and Dohrmann [20]
revealed that even more than a decade after the Stuxnet incident, critical systems such as

https://doi.org/10.17509/coelite.v0i0.00000

57 | Journal of Computer Engineering, Electronics and Information Technology, Vol. 4 Issue 1, April 2025 Page 51-60

DOI: https://doi.org/10.17509/coelite.v4i1.82498
p- ISSN 2829-4157 e- ISSN 2829-4149

Siemens S7 remain vulnerable, emphasizing the urgent need for layered and adaptive data
protection strategies.

3. RESULTS AND DISCUSSION
a. Pearson Correlation Results

Table 2 presents the results of the Pearson correlation analysis based on 10 trials involving
various file extensions, including XLSX, DOCX, JPG, PDF, and PPTX, with the Rail Fence cipher
applied using a key size of 3. The analysis compares the Base64-encoded plaintext with the
ciphertext generated by the Rail Fence cipher algorithm. The findings consistently
demonstrate that the average Pearson correlation coefficient is approximately 0.00 or slightly
negative (-0.00), indicating a very weak or essentially no correlation between the two
datasets. In the field of cryptography, such an outcome is highly favorable, as it signifies a
minimal statistical association between the plaintext and the ciphertext. This absence of
correlation suggests that the encryption process effectively transforms the plaintext into a
randomized sequence that is statistically independent of its original structure, thereby
enhancing the unpredictability and security of the ciphertext. The randomness indicated by
this lack of correlation contributes to the cipher's resistance to statistical and cryptanalytic
attacks, ultimately strengthening the confidentiality and integrity of the protected data.

Table 2. Pearson Correlation Analysis Result

No File Rail
(key)

Base64 Rail Fence
Cipher

Pearson Correlation

1. excel_one.xlsx 3 UesDB…
AAAA

UBBAI…
cAA4A

0.0054762160302451

2. excel_two.xlsx 3 UesDB…
AAA==

UBBAI…
oI2A=

-0.0015123902837401

3. jpg_one.jpg 3 /9j/4…B/9k= /4SRA…
d8Vfk

-0.01659774571885

4. jpg_two.jpg 3 /9j/4… f/9k= /4RZS…
Diomk

-0.0029870957094411

5. msword_one.docx 3 UesDB…
AAA==

UBBAI…
wMSA=

0.0023166717367943

6. msword_two.
docx

3 UesDB…
AAAAA

UBBAI…
IDAMA

0.013524173737449

7. pdf_one.pdf 3 JVBER…
PRgo=

JRLJz…
YkoVo

0.00057255410312938

8. pdf_two.pdf 3 JVBER…
FT0Y=

JRLCt…
EI0VY

-0.0031939823667947

9. ppt_one.pptx 3 UesDB…
AAAA

UBBAI…
EAApA

0.00018997790720693

https://doi.org/10.17509/coelite.v0i0.00000

Pradeka et al., Digital Data Security Using a Combination of Base64 Encoding, Rail Fence Cipher … |58

DOI: https://doi.org/10.17509/coelite.v4i1.82498

p- ISSN 2829-4157 e- ISSN 2829-4149

10. ppt_two.pptx 3 UesDB…
WAAAA

UBBAI…
MDABA

0.00050871635587214

In the subsequent file compression experiments summarized in Table 3, ten trials were
conducted using files with various extensions, including XLSX, JPG, DOCX, PDF, and PPTX. The
results consistently show that, on average, the file sizes were reduced by approximately 1 KB
after applying the Gzip compression algorithm. This reduction demonstrates the capability of
Gzip to achieve a modest degree of compression, which can contribute positively to storage
efficiency and optimize resource utilization, particularly when processing multiple files or
managing limited storage environments.
However, it is noteworthy that in the third trial, no file size reduction was observed following
the compression process. This outcome can be attributed to the characteristics of the Gzip
algorithm, which may yield minimal or no compression gains when applied to files that are
already small or contain limited redundancy. In such cases, the compression overhead may
equal or exceed the potential savings, resulting in unchanged file sizes. Despite these
limitations, the overall compression performance remains beneficial, especially for larger
datasets where redundancy and data patterns offer greater opportunities for compression.

Table 3. The Result of Gzip Compression

No File Name Before
Extention

Before
Compress

After
Compress

After
Extention

1. excel_one .xlsx 82 KB 78 KB .gz

2. excel_two .xlsx 42 KB 41 KB .gz

3. jpg_one .jpg 7 KB 7 KB .gz

4. jpg_two .jpg 183 KB 177 KB .gz

5. msword_one .docx 36 KB 34 KB .gz

6. msword_two .docx 27 KB 24 KB .gz

7. pdf_one .pdf 1.608 KB 1.495 KB .gz

8. pdf_two .pdf 129 KB 121 KB .gz

9. ppt_one .pptx 5.707 KB 5.630 KB .gz

10. ppt_two .pptx 5.559 KB 5.468 KB .gz

4. CONCLUSION

In conclusion, this study successfully demonstrates the implementation and performance
analysis of a hybrid digital data security approach that integrates Base64 encoding, the Rail
Fence cipher algorithm, and Gzip compression. The combination of these three techniques
offers a multi-layered security framework that enhances data confidentiality, integrity, and
storage efficiency. The Pearson correlation analysis reveals that the ciphertext generated by
the Rail Fence cipher exhibits an average correlation coefficient of approximately 0.00 or
slightly negative when compared to the Base64-encoded plaintext, indicating a statistically
insignificant relationship between the two datasets. This absence of correlation reflects the
effectiveness of the encryption process in producing a randomized ciphertext that resists
statistical and cryptanalytic attacks. Furthermore, the Gzip compression trials show an

https://doi.org/10.17509/coelite.v0i0.00000

59 | Journal of Computer Engineering, Electronics and Information Technology, Vol. 4 Issue 1, April 2025 Page 51-60

DOI: https://doi.org/10.17509/coelite.v4i1.82498
p- ISSN 2829-4157 e- ISSN 2829-4149

average file size reduction of approximately 1 KB across multiple file types, including XLSX,
JPG, DOCX, PDF, and PPTX. Although some trials demonstrated no change in file size due to
the limitations of Gzip when compressing already small or less redundant files, the overall
compression performance remains beneficial for optimizing storage resources, particularly
for larger datasets.

For future research, it is recommended to explore the integration of more advanced or
modern encryption algorithms alongside Base64 and Rail Fence to further enhance the
security robustness of the system. Additionally, examining the performance of alternative
compression algorithms such as BZIP2, LZMA, or Zstandard may provide better compression
efficiency, especially for diverse file types and larger datasets. Future studies may also
consider evaluating the proposed method under real-world scenarios involving network
transmission, cloud storage, and resistance against various cryptographic attacks, to validate
its practical applicability and scalability in modern data security infrastructures.

5. ACKNOWLEDGMENT
The authors would like to express their deepest gratitude to the Computer Engineering

Study Program at Universitas Pendidikan Indonesia (UPI) Cibiru Campus for the continuous
academic guidance, research facilities, and valuable support throughout the completion of
this study. Special appreciation is also extended to Universitas Widyatama and Universitas
Informatika dan Bisnis Indonesia (UNIBI) for their collaborative contributions, insightful
discussions, and institutional support that greatly enhanced the quality and scope of this
research. The constructive feedback and academic resources provided by all parties involved
have played a significant role in the successful execution and completion of this research
project.

6. AUTHORS’ NOTE
All authors contributed equally to the development and completion of this research. The

first author is affiliated with the Computer Engineering Study Program, Universitas Pendidikan
Indonesia (UPI) Cibiru Campus. The second author is affiliated with Universitas Widyatama,
and the third author is affiliated with Universitas Informatika dan Bisnis Indonesia (UNIBI).
The authors declare no conflict of interest related to this study. Correspondence concerning
this article should be addressed to dedenpradeka@upi.edu

7. REFERENCES

[1] Pradeka, D., Adiwilaga, A., Agustini, D. A. R., Suheryadi, A., & Nuriman, R. (2023). Design
and Build an Assessment Platform by Inserting Moodle-Based Cryptographic Methods.
Jurnal Nasional Teknologi dan Sistem Informasi, 9(3), 264-270.

[2] Kurniawan, M. S., Putra, I. G. A. S., Maheswara, I. M. A., Labamaking, R. Y. M. N.,
Listartha, I. M. E., & Saskara, G. A. J. (2023). Analisis Efektivitas Dan Efisiensi Metode
Encoding Dan Decoding Algoritma Base64. Jurnal Informatika Dan Tekonologi Komputer
(JITEK), 3(1), 24-34.

[3] Rachmawati, D., Budiman, M. A., & Yusuf, A. (2020, May). Combination of Rail Fence
Cipher Algorithm and Least Significant Bit Technique to Secure The Image File. In IOP
Conference Series: Materials Science and Engineering (Vol. 851, No. 1, p. 012069). IOP
Publishing.

[4] Sulistyo, F. P. (2018). Aplikasi Server Web Dengan Kompresi GZIP. Jurnal Ilmu Teknik dan
Komputer, 2(1), 2621-1491.

https://doi.org/10.17509/coelite.v0i0.00000

Pradeka et al., Digital Data Security Using a Combination of Base64 Encoding, Rail Fence Cipher … |60

DOI: https://doi.org/10.17509/coelite.v4i1.82498

p- ISSN 2829-4157 e- ISSN 2829-4149

[5] Ellis, T. J., & Levy, Y. (2010, June). A guide for novice researchers: Design and
development research methods. In Proceedings of Informing Science & IT Education
Conference (InSITE) (Vol. 10, No. 10, pp. 107-117). Italy, Cassino.

[6] Cotton, W. (2008). Supporting the Use of Learning Objects in The K-12 Environment: A
Design-Based Research Project.

[7] Ellis, T. J., & Levy, Y. (2010, June). A Guide for Novice Researchers: Design and
Development Research Methods. In Proceedings of Informing Science & IT Education
Conference (InSITE) (Vol. 10, No. 10, pp. 107-117). Italy, Cassino.

[8] Barmawi, A. M., & Pradeka, D. (2017). Information Hiding Based on Histogram and Pixel
Pattern. Journal of Cyber Security and Mobility, 397-426.

[9] Pradeka, D., Adiwilaga, A., Agustini, D. A. R., Suheryadi, A., & Nuriman, R. (2023). Design
and Build an Assessment Platform by Inserting Moodle-Based Cryptographic Methods.
Jurnal Nasional Teknologi dan Sistem Informasi, 9(3), 264-270.

[10] Pradeka, D. (2019). Implementasi Aplikasi Kriptografi Berbasis Android menggunakan
Metode Substitusi dan Permutasi. In Search (Informatic, Science, Entrepreneur, Applied
Art, Research, Humanism), 18(1), 161-168.

[11] Aruan, M. C., & Rahayu, W. (2023). Analisis Performa Algoritma Kompresi Data dalam
Penyimpanan dan Transfer Data. LANCAH: Jurnal Inovasi dan Tren, 1(2), 228-232.

[12] Wen, S., & Dang, W. (2018, June). Research on base64 encoding algorithm and PHP
implementation. In 2018 26th International Conference on Geoinformatics (pp. 1-5).
IEEE.

[13] Mesran, M., Abdullah, D., Hartama, D., Roslina, R., Asri, A., Rahim, R., & Ahmar, A. S.
(2018, June). Combination Base64 and Hashing Variable Length for Securing Data. In
Journal of Physics: Conference Series (Vol. 1028, p. 012056). IOP Publishing.

[14] Red Hat. (n.d.). Base64 encoding. Red Hat. Retrieved January 15, 2025, from
https://www.redhat.com/en/blog/base64-encoding

[15] Godara, S., Kundu, S., & Kaler, R. (2018). An improved Algorithmic Implementation of
Rail Fence Cipher. International Journal of Future Generation Communication and
Networking, 11(2), 23-32.

[16] Gailly, J. L., & Adler, M. (1992). Gnu gzip. GNU Operating System, 8-18.
[17] Beddolo, C. A., & Budiman, H. (2024). Kriptografi Hill Cipher Menggunakan Matriks

Fibonacci. Jurnal Matematika Komputasi dan Statistika, 4(3), 790-800.

[18] Zala, D. K., & Khan, M. A. (2024). Compressive Method for Securing Text Data Using
Base64 Encoding and Fernet Cryptography. 2024 2nd International Conference on Cyber
Security and Digital Forensics. IEEE.https://ieeexplore.ieee.org/document/10625646

[19] Speidel, U., & Manoharan, S. (2022). Strengthening Puzzle-based Learning with
Individualization. IEEE Global Engineering Education Conference (EDUCON).
https://ieeexplore.ieee.org/document/9820231

[20] Finck, C., & Dohrmann, T. (2023). A Decade After Stuxnet: How Siemens S7 is Still an
Attacker's Heaven. Blackhat Conference Europe. https://colinfinck.de/files/EU-23-
Finck-A-Decade-After-Stuxnet-How-Siemens-S7-is-Still-an-Attackers-Heaven-wp.pdf

https://doi.org/10.17509/coelite.v0i0.00000
https://www.redhat.com/en/blog/base64-encoding
https://ieeexplore.ieee.org/document/10625646
https://ieeexplore.ieee.org/document/9820231
https://colinfinck.de/files/EU-23-Finck-A-Decade-After-Stuxnet-How-Siemens-S7-is-Still-an-Attackers-Heaven-wp.pdf
https://colinfinck.de/files/EU-23-Finck-A-Decade-After-Stuxnet-How-Siemens-S7-is-Still-an-Attackers-Heaven-wp.pdf

