A Metaheuristic-Based Approach to Inflation Prediction in Indonesia with Support Vector Regression (SVR)
Abstract
Inflation prediction plays a vital role in individual, corporate, and government economic decision-making. This study evaluates the performance of the Support Vector Regression (SVR) algorithm in predicting monthly inflation using 251 data points from Bank Indonesia. Two parameter optimization methods, Grid Search Optimization and Particle Swarm Optimization (PSO), are applied to enhance prediction accuracy. Data pre-processing includes normalization using Min-Max Scaler and splitting into training and testing sets with ratios of 85:15 and 90:10. The optimization results indicate that PSO with a 90:10 ratio outperforms other approaches, achieving a Mean Absolute Percentage Error (MAPE) of 20.27% and an R-squared value of 89.76%. These findings highlight the significance of effective parameter optimization methods in improving prediction model performance, especially for non-linear data such as inflation. The results also demonstrate machine learning techniques' potential in analyzing time series data for economic and financial applications. This study provides insights into developing more accurate prediction systems, which can contribute to better economic planning and policy making.
Keywords
Full Text:
PDFReferences
A. S. Fadila and A. Purnamasari, “Pengaruh Inflasi Terhadap Pertumbuhan Ekonomi Indonesia,” Ekonomica Sharia: Jurnal Pemikiran dan Pengembangan Ekonomi Syariah, vol. 7, no. 1, pp. 17–27, 2021, [Online]. Available: www.bps.go.id,
A. Aulia, B. Aprianti, Y. Supriyanto, and C. Rozikin, “Prediksi Harga Emas dengan Menggunakan Algoritma Support Vector Regression (SVR) dan Linear Regression (LR),” Jurnal Ilmiah Wahana Pendidikan, vol. 8, no. 5, pp. 84–88, 2022.
R. Khalid and N. Javaid, “A Survey on Hyperparameters Optimization Algorithms of Forecasting Models in Smart Grid,” Sustain Cities Soc, 2020, [Online]. Available: http://www.njavaid.com
Priliani, L. A., Pramudito, E. N., & Hartati, S. (2022). Forecasting inflation rate using support vector regression (SVR) based weight attribute particle swarm optimization (WAPSO). Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 6(1), 149–154.
https://doi.org/10.29207/resti.v6i1.3689
M. Beniwal, A. Singh, and N. Kumar, “Forecasting Long-Term Stock Prices Of Global Indices: A Forward-Validating Genetic Algorithm Optimization Approach For Support Vector Regression,” Appl Soft Comput, vol. 145, Sep. 2023, doi: 10.1016/j.asoc.2023.110566.
Lubis, Z., Arisandi, D., Ginting, B. N., & Syahputra, S. (2021). Perbandingan Kinerja Algoritma Support Vector Regression (SVR) dan Long Short Term Memory (LSTM) dalam Memprediksi Inflasi. Jurnal Teknologi Informasi dan Ilmu Komputer, 8(5), 903-912.
B. Bargam, A. Boudhar, C. Kinnard, H. Bouamri, K. Nifa, and A. Chehbouni, “Evaluation Of The Support Vector Regression (SVR) And The Random Forest (RF) Models Accuracy For Streamflow Prediction Under A Data-Scarce Basin In Morocco,” Discover Applied Sciences, vol. 6, no. 6, June. 2024, doi: 10.1007/s42452-024-05994-z.
A. Arfan and L. ETP, “Perbandingan Algoritma Long Short-Term Memory dengan SVR Pada Prediksi Harga Saham di Indonesia,” PETIR, vol. 13, no. 1, pp. 33–43, Mar. 2020, doi: 10.33322/petir.v13i1.858.
Fahrudin, R., & Sumitra, I. D. (2020). Peramalan Inflasi menggunakan Metode SARIMA dan Single Exponential Smoothing (Studi Kasus: Kota Bandung). Majalah Ilmiah UNIKOM, 17(2), 111-120.
RapidMiner, “Optimize Parameter Grid,” RapidMiner Documentation.
Alfiyatin, A. N., Mahmudy, W. F., Ananda, C. F., & Widodo, A. W. (2021). Inflation Rate Forecasting Using Extreme Learning Machine and Improved Particle Swarm Optimization. International Journal of Intelligent Engineering & Systems, 14(6), 333-342.
Isnaeni, R., Sudarmin, S., & Rais, Z. (2022). Analisis Support Vector Regression (Svr) Dengan Kernel Radial Basis Function (Rbf) Untuk Memprediksi Laju Inflasi Di Indonesia. Variansi: Journal Of Statistics And Its Application On Teaching And Research, 4(1), 30-38. DOI: 10.35580/variansiunm13
Wulandari, N., Putri, R. A., Nazhirah, A., & Novia, S. A. (2025). Inflation Forecasting for Riau Province: A Comparison of Parametric ARIMA with Nonparametric Nadaraya-Watson Kernel Regression and B-Spline Methods. Jurnal Matematika, Statistika dan Komputasi, 21(3), 763-774.
Fauziah, R., Handayani, R., & Santoso, A. (2022). Penerapan Extreme Learning Machine (ELM) untuk Prediksi Tingkat Inflasi di Indonesia. Jurnal Rekayasa Informasi, 11(1), 22-29.
El-Daly, S. H. (2021). Forecasting Inflation Rates Using Artificial Neural Networks: Evidence from Egypt. The Journal of Economic and Administrative Sciences, 37(1), 164-184.
Ponziani, R. M. (2023). Inflation Forecasting Using Autoregressive Distributed Lag (ARDL) Models. Jurnal Ekonomi & Studi Pembangunan, 24(2), 316–330.
Bandara, W. M. S., & De Mel, W. A. R. (2024). Evaluating the Efficacy of Supervised Machine Learning Models in Inflation Forecasting in Sri Lanka. Am. J. Appl. Stat. Econ, 3, 51-60.
Raharja, M. A., Darmawan, I., Nilakusumawati, D. P. E., & Supriana, I. W. (2021). Analysis of membership function in implementation of adaptive neuro fuzzy inference system (ANFIS) method for inflation prediction. Journal of Physics: Conference Series, 1722(1), 012005.
Aysun, N., & Ekinci, E. (2022). Inflation Forecasting Using Machine Learning Algorithms in Turkey. Journal of Business, Economics and Finance (JBEF), 11(2), 173-183.
Nurjanah, A., & Sumarna, H. (2022). Prediksi Inflasi di Indonesia Menggunakan Jaringan Saraf Tiruan Feedforward Backpropagation dengan Particle Swarm Optimization. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 10(1), 10-18.
DOI: https://doi.org/10.17509/coelite.v4i1.78101
Refbacks
- There are currently no refbacks.
Journal of Computer Engineering, Electronics and Information Technology (COELITE)
is published by UNIVERSITAS PENDIDIKAN INDONESIA (UPI),
and managed by Department of Computer Enginering.
Jl. Dr. Setiabudi No.229, Kota Bandung, Indonesia - 40154
email: coelite@upi.edu
e-ISSN: 2829-4149
p-ISSN: 2829-4157