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A B S T R A C T   A R T I C L E   I N F O 

This systematic review investigates how artificial intelligence 
and remote sensing technologies contribute to advancing 
marine debris monitoring in support of environmental 
education and sustainable development goals. A structured 
literature review was conducted on selected studies 
published between 2019 and early 2025, focusing on the 
integration of deep learning and various remote sensing 
platforms, including satellite imagery and unmanned aerial 
systems. The findings demonstrate that AI-enabled systems 
enhance detection accuracy and monitoring scalability. This 
improvement matters because conventional methods are 
limited in spatial coverage, frequency, and reliability. The 
review identifies persistent barriers, such as insufficient 
ground truth data and the inability of models to generalize 
across regions. These challenges highlight the need for 
educational programs that strengthen data literacy, cross-
disciplinary collaboration, and environmentally conscious 
digital practices. The study provides actionable insights for 
educators, researchers, and policymakers, offering a 
technological foundation to promote sustainability learning 
and informed decision-making in response to global marine 
plastic pollution. 
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1. INTRODUCTION 
 

Marine debris, particularly plastic litter, has become one of the most pressing 
environmental issues of the 21st century. Each year, millions of tons of plastic waste enter 
the world’s oceans, harming marine wildlife, degrading ecosystems, and threatening coastal 
economies (Abreo et al., 2023). South-east Asia is a global hotspot for marine plastic pollution, 
largely due to high plastic use, inadequate waste management, and riverine inputs. Countries 
such as Indonesia, the Philippines, Vietnam, and Thailand rank among the top contributors to 
ocean plastics. The region’s tropical coastlines and archipelagic waters are inundated with 
debris, from floating trash mats offshore to accumulated litter on beaches, with severe 
ecological and socio-economic impacts. However, the true extent and dynamics of marine 
debris remain poorly quantified, in part because traditional monitoring (ship surveys, beach 
audits) is labor-intensive, spatially limited, and infrequent (Radjawane et al., 2025). There is 
an urgent need for innovative monitoring tools that can systematically track marine debris 
over a broad spatio-temporal scale (Cozar et al., 2024). 

Remote sensing has rapidly advanced as a promising solution for large-scale observation 
of marine debris. Satellite imagery, aerial photography from drones (UAVs), and other remote 
platforms provide synoptic and repeated views of oceans and coastlines (Abreo et al., 2023). 
Recent studies have demonstrated that optical satellite sensors can detect aggregations of 
floating plastics under certain conditions (Cozar et al., 2024). Multispectral instruments (like 
the Sentinel-2 MSI) have shown spectral signatures that distinguish plastics from natural 
organic matter (e.g., seaweed) by exploiting differences in visible to shortwave-infrared 
reflectance (Cozar et al., 2024). Novel spectral indices such as the Floating Debris Index (FDI) 
have been developed to highlight marine plastic in imagery (Cozar et al., 2024). At finer scales, 
UAVs carrying RGB or multispectral cameras have been used to map debris on coastlines and 
nearshore waters with high resolution, even identifying individual litter items (Abreo et al., 
2023). Beyond optical methods, researchers are also exploring hyperspectral sensors, thermal 
infrared imagery, and even radar (SAR) for marine litter detection (Abreo et al., 2023), aiming 
to overcome limitations like cloud cover or low contrast in visible bands. 

Critically, the effectiveness of remote sensing for debris detection has been greatly 
enhanced by artificial intelligence (AI) and machine learning. Traditional image analysis 
techniques (thresholding, band ratios) often struggle with the complexity of differentiating 
plastics from lookalike materials and dealing with variable environmental conditions (glint, 
turbidity, etc) (Cozar et al., 2024; Kruse et al., 2023). AI approaches – particularly deep 
learning – have proven adept at learning subtle spectral, textural, and contextual features of 
debris from large datasets. Convolutional Neural Networks (CNNs) trained on labelled 
satellite or drone images can automatically detect and classify marine debris with higher 
accuracy than manual or rule-based methods. For instance, the application of a CNN-based 
classifier on Sentinel-2 images led to successful discrimination of suspected plastic patches 
with ~86% accuracy in a 2020 study (Abreo et al., 2023). Likewise, deep learning models 
applied to UAV imagery have identified plastic litter on beaches and nearshore waters, even 
in challenging developing country contexts (Abreo et al., 2023). Besides CNNs, recent research 
is beginning to investigate transformer-based models and other advanced architectures for 
remote sensing image analysis, which could further improve debris detection by capturing 
long-range dependencies and multi-modal data. 

The convergence of geospatial data and AI holds enormous potential for near-real-time, 
automated marine debris monitoring on a global scale (Cozar et al., 2024; Kruse et al., 2023). 
However, realising this potential requires surmounting several challenges. One issue is the 

http://dx.doi.org/10.%2017509/xxxx.xxxx
http://dx.doi.org/10.%2017509/xxxx.xxxx
http://dx.doi.org/10.%2017509/xxxx.xxxx


245 | Indonesian Journal of Educational Research and Technology, Volume 5 Issue 3, December 2025 Hal 243-252 

DOI: http://dx.doi.org/10.17509/xxxx.xxxx 

p- ISSN 2775-8419 e- ISSN  2775-8427 

scarcity of ground truth data – obtaining sufficient labelled examples of marine debris in 
satellite images is difficult, limiting supervised model training (Kruse et al., 2023). The complex 
environment (e.g., water color, waves, mixed debris, and seaweed) leads to false positives 
and false negatives in detection. Additionally, models trained in one region may not 
generalize elsewhere due to different backgrounds or debris types (a problem of domain shift) 
(Karakus, 2023). Computational constraints are also significant; analyzing high-resolution 
imagery over large areas or frequent time steps demands efficient algorithms and sometimes 
distributed processing (Kruse et al., 2023). Nonetheless, progress in this field has accelerated 
in recent years. 

While most of the reviewed literature focuses on technical efficacy, there is growing 
recognition that such innovations must be accompanied by strong educational integration to 
maximize societal impact. The complexity of marine debris monitoring using AI and remote 
sensing presents a valuable opportunity for environmental education. Embedding these tools 
into educational contexts fosters critical thinking, spatial reasoning, and data literacy. By 
learning how to interpret satellite imagery, understand spectral patterns, and engage with AI-
based environmental analysis, students and citizens alike gain a deeper appreciation of both 
the marine environment and the technologies used to protect it. These skills are increasingly 
essential in the face of global challenges and align directly with education for sustainable 
development. In this regard, marine debris monitoring is not only a technological endeavor 
but also a pedagogical platform for promoting interdisciplinary, sustainability-oriented 
learning. As such, the potential of AI and remote sensing should be extended into classrooms, 
public engagement programs, and teacher training modules to support long-term behavioral 
change and informed environmental stewardship. 

Given the rapid development of the literature since 2020, a systematic review is needed to 
synthesize the state-of-the-art and guide future research. Several narrative reviews have 
touched on aspects of marine debris remote sensing (Karakus, 2023), and broad bibliometric 
analyses have highlighted AI’s rising role in ocean waste management (Adeoba et al., 2025). 
Building on and going beyond these, we present a comprehensive review focusing specifically 
on AI-enabled remote sensing of marine debris, with a spotlight on Southeast Asia. We adopt 
a formal systematic methodology to identify relevant studies from 2019 through early 2025, 
ensuring inclusion of the latest advances, such as those published in 2024 and 2025. We aim 
to: (i) characterize the integration of AI (especially machine learning and deep learning) with 
various remote sensing platforms for detecting and monitoring marine debris; (ii) summarize 
the key methodologies, sensors, and models deployed, using tables for clear comparison; (iii) 
analyze bibliometric trends such as keywords co-occurrence and thematic clusters of research 
topics; (iv) emphasize findings from or applicable to Southeast Asian contexts; (v) identify 
knowledge gaps, practical challenges, and opportunities for future innovation; and (vi) 
explore how these advances can be integrated into environmental education to support 
sustainable development goals (SDGs). By consolidating findings across dozens of recent 
studies, this review provides an up-to-date reference for environmental scientists, educators, 
and policymakers seeking scalable, interdisciplinary approaches to marine plastic monitoring 
and education. 

2. METHODS 
 

This study adopts a systematic review approach to critically examine and synthesize 
existing literature on the application of artificial intelligence (AI) in marine debris monitoring 
using remote sensing technologies, with a particular focus on Southeast Asia. The review 
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process involved structured steps including identification, screening, eligibility assessment, 
and data extraction, following the PRISMA 2020 framework. 

From each included study, we extracted data on the authors, year of publication, 
geographic scope, remote sensing platform used, AI model employed, detection accuracy, 
sensor resolution, and key findings. We paid special attention to studies relevant to the 
Southeast Asian context. Comparative tables were developed to analyse methodology, sensor 
performance, and AI accuracy. 

The results were synthesized through descriptive analysis, supported by summary tables 
to compare methodological approaches, sensor types, and AI models used across studies. 
Special emphasis was placed on identifying research conducted in or applicable to Southeast 
Asia, as this region represents a global priority area for marine debris mitigation. This 
methodological framework enables a clear understanding of the current technological 
landscape, key advances, and ongoing gaps in the field of AI-enabled remote sensing for 
marine plastic pollution monitoring. The selection process followed the PRISMA 2020 
guidelines, covering four databases (PubMed, ScienceDirect, Google Scholar, and 
ResearchGate), and applied strict inclusion/exclusion criteria.  

After removing 23 duplicate records, 15 automation-filtered records, and 9 non-peer-
reviewed or non-English sources, 88 records remained for title and abstract screening. Of 
these, 55 were excluded based on relevance. The remaining 33 full-text reports were 
assessed, with 5 not retrievable and 17 excluded due to scope mismatch or lack of 
methodological clarity. Finally, 11 studies met all inclusion criteria and were analyzed in this 
review. The detailed screening process is illustrated in Figure 1, which presents the PRISMA 
flow diagram summarizing identification, screening, and inclusion stages. 

 

Figure 1. PRISMA 2020 flow diagram of study identification, screening, and inclusion 
process. 
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3. RESULTS AND DISCUSSION 
 

Across the 11 studies reviewed (2019–2025), a growing body of evidence shows the 
increasing effectiveness of combining remote sensing platforms (satellite, UAV, SAR, thermal, 
and hyperspectral imagery) with artificial intelligence (AI) primarily deep learning to detect, 
classify, and map marine debris. The studies demonstrated strong potential for scaling these 
tools for operational environmental monitoring, especially in Southeast Asia, where debris 
density and ecological vulnerability are high. The systematic review is shown in Table 1. 

Table 1. Results Summary and Methodological Comparison 

No Study Platform and 
Sensor 

AI/ML 
Method 

Region/Test 
Area 

Key Findings 

1 Biermann et al. 
(2021) 

UAV + Hyperspectral 
(VNIR–SWIR) 

Linear 
Discriminant 
Analysis (LDA) 

Coastal 
Europe 

~85% accuracy in 
separating PE/PET 
plastics from 
organic matter. 

2 Topouzelis et al. 
(2019) 

Sentinel‑2 MSI Floating Debris 
Index + SVM 

Mediterranea
n Sea 

Added 
pansharpening; 
>80% classification 
accuracy. 

3 Themistocleous 
et al. (2020) 

Sentinel-2 Imagery Custom CNN 
(PLD-
CNN/PLQ-
CNNs) 

Cyprus 83–86% accuracy 
for plastic detection 
in aerial images. 

4 Maximenko et 
al. (2019) 

Satellite & UAV Review ML, 
CNN, and 
object 
detection 

Global UAV + CNN is the 
best for nearshore 
monitoring, 
provided workflow 
taxonomy. 

5 Papageorgiou et 
al. (2022) 

Sentinel‑2 MSI Spectral 
unmixing + 
comparison 

Mediterranea
n (Plastic 
Litter Project) 

Successfully 
distinguished 
plastics from 
natural materials 
using spectral 
unmixing. 

6 Danilov & 
Serdiukova 
(2024) 

Satellite + UAV Review DL 
methods 

Global Compiled ML/AI 
methods, 
13practical 
limitations, 
mitigation 
strategies. 

7 Shen et al. 
(2024) 

Satellite images YOLOv7 + 
attention 
(CBAM) 

Global 
dataset 

CBAM-enhanced 
model achieved 
F1 = 77% (box) and 
73% (mask). 

8 Nivedita et al. 
(2024) 

Sentinel‑2 MSI Naive Bayes Brazil coast 87% total accuracy; 
best at 92% in 
urban estuary. 

 
3.1. Synthesis of Key Findings: A Transformative Shift in Marine Debris Monitoring 

Our systematic review unequivocally demonstrates that the convergence of Artificial 
Intelligence (AI) and remote sensing is ushering in a transformative era for marine debris 
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monitoring. The rapid increase in publications since 2019, as highlighted in the 11 studies 
reviewed, underscores a critical shift from traditional, labor-intensive methods to more 
scalable, automated, and often near-real-time solutions. This directly addresses the "urgent 
need for innovative monitoring tools that can systematically track marine debris over a broad 
spatio-temporal scale" identified in our Introduction. Satellite platforms, particularly those 
equipped with multispectral sensors like Sentinel-2 MSI, have proven invaluable for broad-
scale detection of floating plastic aggregations. These platforms offer unprecedented 
synoptic views crucial for identifying global hotspots and long-term accumulation trends. The 
utility of satellite data is profoundly amplified by AI, especially deep learning, which moves 
beyond simple spectral indices to learn complex, subtle patterns. This enables the effective 
differentiation of plastics from natural lookalikes such as seaweed – a persistent challenge for 
conventional methods – with reported accuracies often exceeding 80%.  

For instance, Themistocleous et al. (2020) achieved 83–86% accuracy for plastic detection 
using a custom CNN on Sentinel-2 imagery, and Topouzelis et al. (2019) demonstrated over 
80% classification accuracy with a Floating Debris Index combined with SVM. Booth et al. 
(2023) even reported 95% precision for density mapping across locations using deep learning 
on satellite multispectral imagery. At finer spatial scales, the proliferation of Unmanned Aerial 
Vehicles (UAVs) combined with advanced deep learning models has revolutionized high-
resolution mapping. Maximenko et al. (2019) highlighted UAVs coupled with CNNs as best for 
nearshore monitoring and provided a workflow taxonomy. The granular detail provided by 
UAV imagery allows for the identification of individual litter items, offering a level of precision 
not easily achieved by satellite data. This high-resolution capability is especially relevant for 
diverse and complex coastlines, like those prevalent in Southeast Asia, where detailed, 
frequent mapping is crucial but often hindered by logistical challenges. The emphasis on AI's 
role is not merely an incremental improvement but a fundamental paradigm shift; as 
acknowledged in our Introduction, traditional image analysis techniques struggled with 
environmental variability, a challenge AI is demonstrably better equipped to handle by 
learning intricate features from vast datasets. 

3.2. Strengths and Limitations of Current Approaches in Practice 

The primary strength of AI-enabled remote sensing for marine debris monitoring lies in its 
scalability and objectivity. Unlike manual surveys, these technologies can cover vast, often 
inaccessible areas repeatedly and systematically, providing consistent, quantifiable data. This 
has enormous implications for tracking marine debris dynamics over time and space, 
informing policy development, and evaluating the effectiveness of mitigation strategies. The 
automated nature of AI detection significantly reduces human bias, speeds up analysis, and 
offers a more efficient use of resources, directly addressing the "labor-intensive, spatially 
limited, and infrequent" nature of traditional monitoring methods identified in our 
Introduction. The demonstrated successes in Southeast Asian contexts, such as interannual 
detection potential over coastal Indonesia by Dimyati et al. (2023), further underscore the 
practical applicability of these solutions for regions with limited resources. However, 
significant limitations and challenges persist, many of which were anticipated in our 
Introduction.  

A critical issue is the scarcity of high-quality, geographically diverse ground truth data. 
Obtaining sufficient, accurately labeled examples of marine debris in satellite and drone 
images is difficult and time-consuming, severely limiting the supervised training of robust AI 
models. This directly impacts the generalizability of models; as highlighted in our 
Introduction, models trained in one region often do not perform well elsewhere due to 
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domain shift, caused by variations in backgrounds, water conditions, or debris types. The 
complex marine environment (e.g., water color, waves, glint, turbidity, mixed debris, and 
seaweed) leads to persistent challenges with false positives and false negatives, impacting 
overall detection accuracy. For instance, while Nivedita et al. (2024) reported 87% total 
accuracy, performance varied based on the urban estuary environment. Furthermore, current 
remote sensing capabilities are primarily limited to surface-level debris, offering minimal 
insight into debris in the water column or on the seafloor, which constitutes a significant 
portion of marine plastic pollution. While SAR and thermal infrared show promise, their 
application for marine debris remains largely experimental, with lower reported accuracies. 
Finally, computational constraints are substantial, as analyzing high-resolution imagery over 
large areas or frequent time steps demands efficient algorithms and significant processing 
power, which can be a barrier for resource-limited regions. Danilov & Serdiukova (2024) 
compiled practical limitations and mitigation strategies in their review of deep learning 
methods. 

3.3. Gaps in Current Research and Future Directions 

Based on the synthesis of the reviewed literature, several critical knowledge gaps and 
promising future directions emerge, aligning with the final aim of our review. There is an 
urgent need for standardized, high-quality, and publicly accessible ground truth datasets of 
marine debris, ideally incorporating diverse geographical locations and environmental 
conditions. Future research should explore advanced data augmentation techniques, 
synthetic data generation, and few-shot or semi-supervised learning to train robust AI models 
with limited labeled data. This is paramount for improving model generalizability across 
varying marine environments. While individual platforms show promise, the next frontier lies 
in the intelligent integration of data from various sensors (e.g., optical, SAR, hyperspectral, 
and thermal infrared) and platforms (satellite, UAVs, in-situ sensors). Fusing these diverse 
data streams using sophisticated AI models (e.g., transformer-based architectures capable of 
handling multi-modal inputs) could overcome individual sensor limitations, providing a more 
comprehensive and resilient monitoring system, particularly for challenging conditions like 
persistent cloud cover in tropical regions. Despite some exploratory work, effective remote 
sensing of microplastics remains a significant challenge.  

Future research should prioritize the development of novel hyperspectral or 
electrochemical sensing techniques combined with highly sensitive AI algorithms capable of 
detecting and quantifying microplastics at sea, which currently falls outside the scope of most 
macro-debris detection methods. Developing AI models that can generalize across different 
marine environments and debris types is crucial. Research should focus on transfer learning, 
domain adaptation, and meta-learning techniques to create models that are less susceptible 
to regional variations and can be more readily deployed globally, including across the diverse 
Southeast Asian coastlines where debris characteristics can vary significantly. While 
promising, many studies remain in the research phase. Future efforts should focus on 
transitioning these technologies into operational monitoring systems. This includes 
developing user-friendly platforms, establishing clear protocols for data collection and 
analysis, and fostering closer collaboration between researchers, environmental agencies, 
and policymakers to ensure that the generated data directly informs effective waste 
management strategies and policy decisions. The focus on Southeast Asia in this review is 
particularly pertinent here, as translating technological advances into actionable insights for 
this critically impacted region will be key to addressing the global plastic crisis. Beyond mere 
detection, future research should explore the integration of debris transport models with AI-
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enabled remote sensing data to predict debris accumulation zones and identify potential 
land-based or ocean-based sources of pollution, moving towards proactive mitigation rather 
than just reactive monitoring. This could provide a crucial tool for intervention strategies. 

3.4. Educational and Sustainable Development Implications 

The integration of artificial intelligence and remote sensing in marine debris monitoring 
presents transformative opportunities not only for environmental science but also for 
educational and sustainable development agendas. The reviewed studies demonstrate the 
value of these technologies in generating accurate, scalable, and near-real-time data about 
marine plastic pollution. This capability, however, is not solely technical; it holds pedagogical 
power when embedded in educational frameworks aimed at fostering data-driven 
environmental awareness. 

Introducing geospatial analysis and AI-based environmental monitoring into school and 
university curricula can enhance sustainability education by equipping learners with the skills 
to interpret satellite imagery, analyze spatial patterns of pollution, and engage with AI-
assisted decision-making processes. This aligns with the Sustainable Development Goals, 
particularly those related to quality education, responsible consumption, life below water, 
and climate action. By promoting interdisciplinary learning, environmental education can 
bridge technology, ecology, and civic responsibility. 

Moreover, the visualization of marine debris through open-access platforms, UAV imagery, 
or mobile apps—when responsibly adapted—can empower local communities and students 
to participate in citizen science efforts. These activities encourage critical reflection on local 
waste practices, plastic use, and ocean stewardship. Schools and universities, especially in 
vulnerable regions like Southeast Asia, can serve as hubs for combining technological tools 
with sustainability narratives. This approach helps transform complex environmental data 
into accessible, actionable knowledge that influences behavior and supports local policy 
dialogue. Thus, the technological advances identified in this review are not ends in themselves 
but should be viewed as components of a broader educational ecosystem. Integrating these 
methods into formal education, public outreach, and teacher training programs will enhance 
both awareness and capacity for tackling marine plastic pollution. In this way, the study 
contributes not only to marine debris science but also to the evolving field of environmental 
pedagogy that supports the achievement of the Sustainable Development Goals. 

4. CONCLUSION 
 

This systematic review underscores the profound impact of the synergy between Artificial 
Intelligence and Remote Sensing in advancing marine debris monitoring capabilities since 
2019. These technologies offer unprecedented opportunities for large-scale, efficient, and 
objective tracking of marine plastic pollution, critically addressing the limitations of traditional 
methods. While significant progress has been made, particularly with satellite-based 
detection of large floating aggregations and high-resolution UAV mapping of coastlines, key 
challenges remain, notably the scarcity of labeled ground truth data, environmental 
variability, and the difficulty of detecting subsurface or micro-debris. The emphasis on 
Southeast Asia within this review highlights both the region's acute vulnerability to marine 
plastic pollution and its potential as a proving ground for the practical application of these 
innovative monitoring tools. Addressing the identified knowledge gaps through robust data 
generation, multi-sensor integration, advanced AI model development, and stronger policy 
alignment will be crucial for realizing the full potential of AI-enabled remote sensing as a 
cornerstone in the global fight against marine plastic pollution. 
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