Acoustic dynamics in performance halls: Enhancing violin sound quality in the FPSD orchestra room

Daniel de Fretes, Fitriawati Fitriawati

Abstract


With an emphasis on improving violin sound quality, this study explores the acoustic dynamics of the FPSD Orchestra Room at Universitas Pendidikan Indonesia. Direct and reflected sound are the two factors that impact the phenomena of interior sound. This research emphasizes the crucial balance between sound absorption and reflection to optimize the acoustic environment and ensure clarity and richness in violin performances. Improving acoustic conditions is vital to increase audience experience and performance quality. The study used a qualitative descriptive research style combining literature review and observations. The research site was the FPSD Orchestra Room, renowned for its historical significance and contribution to music education. The observations revealed significant acoustic obstacles that adversely affected the violin sound's clarity, including excessive reverberation and unequal sound dispersion. The literature review revealed the theoretical underpinnings of sound propagation, reverberation, absorption, reflection, and diffraction. The acoustic environment can be greatly enhanced by introducing sound-absorbing materials to optimize reverberation duration, controlling reflections with diffusers, and utilizing adaptive acoustic systems. Furthermore, combining virtual acoustics technology with digital sound processing systems allows for dynamic control over acoustic parameters, increasing the performance space's adaptability. These improvements provide a customized acoustic environment that supports a variety of musical performances and guarantees the audience a clear, engaging auditory experience. This study emphasizes the significance of fusing cutting-edge technology innovations with conventional acoustic design concepts to attain optimal sound quality in performance halls. Innovation and research must never stop to improve these acoustic settings even further.


Keywords


Acoustic environment; Violin; Orchestra room; Performance hall

Full Text:

PDF

References


Ahern, K. F. (2022). Soundscaping Learning Spaces: Online Synchronicity and Composing Multiple Sonic Worlds. Postdigital Science and Education, 4, 160-176.

Allingham, E., Burger, B., & Wöllner, C. (2021). Motor performance in violin bowing: Effects of attentional focus on acoustical, physiological and physical parameters of a sound-producing action. Journal of New Music Research, 50(5), 428-446.

Ambarwati, D. R. S. (2015). Tinjauan Akustik Perancangan Interior Gedung Pertunjukan. Imaji, 7(1).

Amran, M., Fediuk, R., Murali, G., Vatin, N., & Al-Fakih, A. (2021). Sound-absorbing acoustic concretes: A review. Sustainability, 13(19), 10712.

An, I., Kwon, Y., & Yoon, S. E. (2021). Diffraction-and reflection-aware multiple sound source localization. IEEE transactions on robotics, 38(3), 1925-1944.

Arvidsson, E., Nilsson, E., Bard Hagberg, D., & Karlsson, O. J. (2021). Quantification of the absorption and scattering effects of diffusers in a room with absorbent ceiling. Buildings, 11(12), 612.

Arenas, J. P., & Sakagami, K. (2020). Sustainable acoustic materials. Sustainability, 12(16), 6540.

Barchiesi, Daniele, Dimitrios Giannoulis, Dan Stowell, and Mark D. Plumbley. "Acoustic scene classification: Classifying environments from the sounds they produce." IEEE Signal Processing Magazine 32, no. 3 (2015): 16-34.

Bedoya, D., Arias, P., Rachman, L., Liuni, M., Canonne, C., Goupil, L., & Aucouturier, J. J. (2021). Even violins can cry: specifically vocal emotional behaviours also drive the perception of emotions in non-vocal music. Philosophical Transactions of the Royal Society B, 376(1840), 20200396.

Bettarello, F., Caniato, M., Scavuzzo, G., & Gasparella, A. (2021). Indoor acoustic requirements for autism-friendly spaces. Applied Sciences, 11(9), 3942.

Burfoot, M. J. (2022). Intelligent passive room Acoustic technology for acoustic comfort in New Zealand classrooms (Doctoral dissertation, Auckland University of Technology)

Conejo, J. M. (2022). Wireless hearing aids for a theater show in costa rica: System design for 96 spectators. Wearable Technology, 3(2).

D’Amato, V., Volta, E., Oneto, L., Volpe, G., Camurri, A., & Anguita, D. (2020). Understanding violin players’ skill level based on motion capture: a data-driven perspective. Cognitive Computation, 12, 1356-1369.

De Fretes, D. (2016). Soundscape: musik dan lingkungan hidup. Promusika, 4(2), 117-125.

Demming, A. (2020). Sound designs. Physics World, 33(2), 23.

De Poli, G. (2022). Sound models for synthesis: a structural viewpoint. Musica/Tecnologia, 7-75.

D’Orazio, D., Fratoni, G., Rovigatti, A., & Garai, M. (2020). A virtual orchestra to qualify the acoustics of historical opera houses. Building Acoustics, 27(3), 235-252.

Domenighini, P. (2021). On best acoustical parameters’ values for ‘Liederistic’music performance: A preliminary study. Building acoustics, 28(4), 361-390.

Embleton, T. F. (1996). Tutorial on sound propagation outdoors. The Journal of the Acoustical Society of America, 100(1), 31-48.

Farooqi, Z. U. R., Ahmad, I., Ditta, A., Ilic, P., Amin, M., Naveed, A. B., & Gulzar, A. (2022). Types, sources, socioeconomic impacts, and control strategies of environmental noise: A review. Environmental Science and Pollution Research, 29(54), 81087-81111.

Fasllija, E., & Yilmazer, S. (2023). Investigating the potential of transparent parallel-arranged micro-perforated panels (MPPs) as sound absorbers in classrooms. International Journal of Environmental Research and Public Health, 20(2), 1445.

Fernando, D., Navaratnam, S., Rajeev, P., & Sanjayan, J. (2023). Study of technological advancement and challenges of façade system for sustainable building: Current design practice. Sustainability, 15(19), 14319.

Fulford, R., Hopkins, C., Seiffert, G., & Ginsborg, J. (2020). Reciprocal auditory attenuation affects looking behaviour and playing level but not ensemble synchrony: A psychoacoustical study of violin duos. Musicae Scientiae, 24(2), 168-185.

Ganchrow, R. (2021). Earth-bound sound: Oscillations of hearing, ocean, and air. Theory & Event, 24(1), 67-116.

Granzotto, N., Yan, R., & Tronchin, L. (2023). Measurements of Room Acoustic and Thermo-Hygrometric Parameters—A Case Study. Applied Sciences, 13(5), 2905.

Hall, D. E. (2007). Journal of Music Theory (VOL.26 No.): Duke University Press on behalf of the Yale University Department of Music.

Hyon, J., & Jeong, D. (2021). Variable Acoustics in performance venues-A review. The Journal of the Acoustical Society of Korea, 40(6), 626-648.

Indrani, H. C., & Cahyawati, C. (2011). Studi Penerapan Sistem Akustik pada Ruang Kuliah Audio Visual. Dimensi Interior, 9(2), 97-107.

Iskandar, A. A. M., Alfonse, M., & El-Horabty, E. S. M. (2023). A comparative study of the different features engineering techniques based on the sensor used in footstep identification and analysis using the floor-based approach. International Journal of Intelligent Computing and Information Sciences, 23(4), 66-95.

Jang, E. S. (2023). Sound absorbing properties of selected green material—A review. Forests, 14(7), 1366.

Jo, H. I., & Jeon, J. Y. (2022). Optimizing sound diffusion in a concert hall using scale-model measurements and simulations. Journal of Building Engineering, 50, 104240.

Kent, R. D., & Rountrey, C. (2020). What acoustic studies tell us about vowels in developing and disordered speech. American Journal of Speech-Language Pathology, 29(3), 1749-1778.

Klein, L., Wood, E. A., Bosnyak, D., & Trainor, L. J. (2022). Follow the sound of my violin: Granger causality reflects information flow in sound. Frontiers in Human Neuroscience, 16, 982177.

Kob, M., Amengual Garí, S. V., & Schärer Kalkandjiev, Z. (2020). Room effect on musicians’ performance. The Technology of Binaural Understanding, 223-249.

Køster, A., & Fernandez, A. V. (2023). Investigating modes of being in the world: an introduction to phenomenologically grounded qualitative research. Phenomenology and the Cognitive Sciences, 22(1), 149-169.

Kurniawan, C., Finahari, N., & Soebiyakto, G. (2022). Analisis Psikoakustik Gending Tari Topeng Gunungsari. Virtuoso: Jurnal Pengkajian dan Penciptaan Musik, 5(1), 11-18.

Latar, L. Z. A., & Satwikasari, A. F. (2019). Komparasi Efektifitas Material Pelapis Dinding Sebagai Insulasi Akustik. PURWARUPA Jurnal Arsitektur, 3(2), 151-156.

Larsen, O. N., Gannon, W. L., Erbe, C., Pavan, G., & Thomas, J. A. (2022). Source-path-receiver model for airborne sounds. Exploring Animal Behavior Through Sound: Volume, 153.

Lee, H., & Johnson, D. (2021). 3D microphone array comparison: objective measurements. Journal of the Audio Engineering Society, 69(11), 871-887.

Li, X., Peng, Y., He, Y., Zhang, C., Zhang, D., & Liu, Y. (2022). Research progress on sound absorption of electrospun fibrous composite materials. Nanomaterials, 12(7), 1123

Lopez, M., Kearney, G., & Hofstädter, K. (2022). Seeing films through sound: Sound design, spatial audio, and accessibility for visually impaired audiences. British Journal of Visual Impairment, 40(2), 117-144.

Luciani, M. G., Cortelazzo, A., & Proverbio, A. M. (2022). The role of auditory feedback in the motor learning of music in experienced and novice performers. Scientific Reports, 12(1), 19822.

Maeda, N., Fazi, F. M., & Hoffmann, F. M. (2021). Sound field reproduction with a cylindrical loudspeaker array using first order wall reflections. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29, 3617-3630.

Maestre, E., Scavone, G. P., & Smith, J. O. (2021). State-space modeling of sound source directivity: An experimental study of the violin and the clarinet. The Journal of the Acoustical Society of America, 149(4), 2768-2781.

Mahdavi, A., Cappelletti, F., & Berger, C. (2023). Reflections on the scientific basis of building-related acoustic standards. Journal of Building Engineering, 74, 106847.

McIntosh, G. D. (2012). The Gatekeeping Function in the Performing Arts: From Impresario to Showcase Conferences (Master's thesis, The Ohio State University).

Milo, A. (2020). The acoustic designer: Joining soundscape and architectural acoustics in architectural design education. Building Acoustics, 27(2), 83-112.

Mónica, M., Mendonça, P., Miranda Guedes, J., & Carvalho, A. P. (2022). Roof replacement of a heritage building using transparent solutions: Room acoustic performance comparison. International Journal of Architectural Heritage, 16(2), 284-301.

Mudjilah, H. S. (2010). Jurusan pendidikan seni musik. 114.

Nastac, S. M., Gliga, V. G., Mihalcica, M., Nauncef, A. M., Dinulica, F., & Campean, M. (2022). Correlation between acoustic analysis and psycho-acoustic evaluation of violins. Applied Sciences, 12(17), 8620

Noviandri, P. P. (2022, July). PENGARUH SOUNDSCAPE TERHADAP KENYAMANAN DAN PRODUKTIVITAS PENGGUNA COWORKING SPACE. In SMART: Seminar on Architecture Research and Technology (Vol. 6, No. 1, pp. 73-86).

Nsalo Kong, D. F., Shen, C., Tian, C., & Zhang, K. (2021). A new low-cost acoustic beamforming architecture for real-time marine sensing: Evaluation and design. Journal of Marine Science and Engineering, 9(8), 868.

Osborne, W. (2022). Listening to Rivers: Using sound to monitor rivers (Doctoral dissertation, Durham University)

Paul, P., Mishra, R., & Behera, B. K. (2021). Acoustic behaviour of textile structures. Textile Progress, 53(1), 1-64.

Peters, B. (2010). Acoustic performance as a design driver: sound simulation and parametric modeling using Smartgeometry. International Journal of Architectural Computing, 8(3), 337-358.

Picaud, M. (2023). Framing performance and fusion: how music venues’ materiality and intermediaries shape music scenes. In The Cultural Sociology of Art and Music: New Directions and New Discoveries (pp. 251-288). Cham: Springer International Publishing.

Pilarska, J. (2021). The constructivist paradigm and phenomenological qualitative research design. Research paradigm considerations for emerging scholars, 64-83

Pisha, L., Atre, S., Burnett, J., & Yadegari, S. (2020). Approximate diffraction modeling for real-time sound propagation simulation. The Journal of the Acoustical Society of America, 148(4), 1922-1933.

Poćwierz-Marciniak, I., & Harciarek, M. (2021). The effect of musical stimulation and mother’s voice on the early development of musical abilities: A neuropsychological perspective. International Journal of Environmental Research and Public Health, 18(16), 8467.

Popp, C., & Murphy, D. T. (2022). Creating audio object-focused acoustic environments for room-scale virtual reality. Applied Sciences, 12(14), 7306

Postma, B. N., & Katz, B. F. (2020). Pre-Sabine room acoustic assumptions on reverberation and their influence on room acoustic design. The Journal of the Acoustical Society of America, 147(4), 2478-2487.

Redman, Y. G., Glasner, J. D., D'Orazio, D., & Bottalico, P. (2023). Singing in different performance spaces: The effect of room acoustics on singers' perception. The Journal of the Acoustical Society of America, 154(4), 2256-2264.

Salselas, I., Penha, R., & Bernardes, G. (2021). Sound design inducing attention in the context of audiovisual immersive environments. Personal and Ubiquitous Computing, 25, 737-748.

Sanfilippo, D. (2021). Complex adaptation in audio feedback networks for the synthesis of music and sounds. Computer Music Journal, 45(1), 6-23.

Sathish, K., Hamdi, M., Chinthaginjala Venkata, R., Alibakhshikenari, M., Ayadi, M., Pau, G., ... & Shukla, N. K. (2023). Acoustic wave reflection in water affects underwater wireless sensor networks. Sensors, 23(11), 5108.

Schlienger, D., & Khashchanskiy, V. (2021). Immersive Spatial Interactivity in Sonic Arts: The Acoustic Localization Positioning System. Computer Music Journal, 45(2), 24-47.

Septiawati, D. A., & Aulia, S. N. (2023). Analyzing the acoustic behavior of gamelan music performance in different environments. Interlude: Indonesian Journal of Music Research, Development, and Technology, 2(2), 58-69.

Snyder, R. L., Dobson, F. W., Elliott, J. A., & Long, R. B. (1981). Array measurements of atmospheric pressure fluctuations above surface gravity waves. Journal of Fluid mechanics, 102, 1-59.

Thakur, I., & Jain, K. (2019). Acoustical treatments in architectural design. International Journal of Research in Engineering, Science and Management, 2(10), 280-287.

Tian, H., Guo, S., Zhao, P., Gong, M., & Shen, C. (2021). Design and implementation of a real-time multi-beam sonar system based on FPGA and DSP. Sensors, 21(4), 1425.

Turchet, L., West, T., & Wanderley, M. M. (2021). Touching the audience: musical haptic wearables for augmented and participatory live music performances. Personal and Ubiquitous Computing, 25, 749-769

Trocka-Leszczynska, E., & Jablonska, J. (2021). Contemporary architectural design of offices in respect of acoustics. Applied Acoustics, 171, 107541.

Valimaki, V., Parker, J. D., Savioja, L., Smith, J. O., & Abel, J. S. (2012). Fifty years of artificial reverberation. IEEE Transactions on Audio, Speech, and Language Processing, 20(5), 1421-1448.

Vessa, B. (2020). Audio Fundamentals: Audio Magic in Movies and Our Daily Lives. SMPTE Motion Imaging Journal, 129(5), 8-16.

Walsh, I., & Rowe, F. (2023). BIBGT: combining bibliometrics and grounded theory to conduct a literature review. European Journal of Information Systems, 32(4), 653-674.

Wiener, F. M., Malme, C. I., & Gogos, C. M. (1965). Sound propagation in urban areas. The Journal of the Acoustical Society of America, 37(4), 738-747.

Williams, J. P. (2001). Acoustic environment of the Martian surface. Journal of Geophysical Research: Planets, 106(E3), 5033-5041.

Wilson, R. (2023). Aesthetic and technical strategies for networked music performance. AI & society, 38(5), 1871-1884.

Wilmering, T., Moffat, D., Milo, A., & Sandler, M. B. (2020). A history of audio effects. Applied Sciences, 10(3), 791.

Xie, B. (2020). Spatial Sound‐History, Principle, Progress and Challenge. Chinese Journal of Electronics, 29(3), 397-416.

Zhang, C., Li, H., Gong, J., Chen, J., Li, Z., Li, Q., ... & Zhang, J. (2023). The review of fiber-based sound-absorbing structures. Textile Research Journal, 93(1-2), 434-449.

Ziemer, T., & Ziemer, T. (2020). Spatial Acoustics. Psychoacoustic Music Sound Field Synthesis: Creating Spaciousness for Composition, Performance, Acoustics and Perception, 145-170.




DOI: https://doi.org/10.17509/interlude.v3i2.71954

Copyright (c) 2024 Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Interlude FPSD © 2024