Age Estimation Untuk Intelligent Advertising Pada Poster Digital Menggunakan Convolutional Neural Network

Galih Abdul Muhyi, Yaya Wihardi, Erna Piantari

Abstract


Sebagai bagian dari intelligent advertising, age estimation digunakan untuk menyesuaikan iklan dari hasil estimasi usia audience. Age estimation (AE) dapat dibangun menggunakan deep learning menggunakan ConvNet dengan kendala seperti data training wajah usia tua yang sedikit dan ketidak seimbangan dataset di dalamnya serta membutuhkan jumlah data yang besar. Salah satu solusi dari permasalahan ini adalah melakukan data augmentasi menggunakan model generatif ACGAN untuk melakukan generate gambar sesuai dengan kelas. Intelligent advertising pada poster digital hanya disimulasikan pada komputer. Simulasi intelligent advertising berfungsi dengan baik terlepas dari terbatasnya iklan dan tidak konsistennya hasil estimasi usia. Hasil dari penggunaan model generatif ACGAN untuk data augmentation berhasil meningkatkan performa hasil pada model AE terlepas dari rendahnya skor IS dan FID serta kualitas gambar yang dihasilkan. Hasil data augmentation lebih terlihat pada model B dengan peningkatan akurasi cumulative score sebesar 4,8% dan skor MAE sebesar 1,297.

Keywords


Intelligent advertising; Age estimation; ACGAN; Convolutional neural network

Full Text:

PDF

References


G. M. Farinella, G. Farioli, S. Battiato, S. Leonardi, and S. Gallo, “Face Re-Identification For Digital Signage Applications,” in International Workshop on Video Analytics for Audience Measurement in Retail and Digital Signage, 2014, vol. 8811, no. April 2016, pp. 40–52, doi: 10.1007/978-3-319-12811-5.

R. E. Abraham and M. R. Kennedy, “Intelligent digital signage system based on gender identification,” in Intelligent Embedded Systems, 2018, vol. 492, pp. 251–262, doi: 10.1007/978-981-10-8575-8_25.

H. J. Müller and A. Krüger, “How much to bid in Digital Signage Advertising Auctions ?,” in International Conference on Pervasive Computing (Pervasive 2007) Adjunct Workshop, 2007, pp. 2–5.

T. J. Yu, C. P. Lee, K. M. Lim, and S. F. A. Razak, “AI-based targeted advertising system,” Indones. J. Electr. Eng. Comput. Sci., vol. 13, no. 2, pp. 787–793, 2019, doi: 10.11591/ijeecs.v13.i2.pp787-793.

A. S. Al-Shannaq and L. A. Elrefaei, “Comprehensive Analysis of the Literature for Age Estimation from Facial Images,” IEEE Access, vol.

, pp. 93229–93249, 2019, doi: 10.1109/ACCESS.2019.2927825.

X. Zhu, Y. Liu, J. Li, T. Wan, and Z. Qin, “Emotion classification with data augmentation using generative adversarial networks,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10939 LNAI, pp. 349–360, 2018, doi: 10.1007/978-3-319-93040-4_28.

A. Antoniou, A. Storkey, and H. Edwards, “Data Augmentation Generative Adversarial Network,” 2017, doi: 10.2139/ssrn.3349576.

S. Shao, P. Wang, and R. Yan, “Generative adversarial networks for data augmentation in machine fault diagnosis,” Comput. Ind., vol. 106, pp. 85–93, 2019, doi: 10.1016/j.compind.2019.01.001.

F.-Y. Cheng, C.-J. Chang, and G.-J. Jong, “Digital Interactive Kanban Advertisement System Using Face Recognition Methodology,” Comput. Water, Energy, Environ. Eng., vol. 02, no. 03, pp. 26–30, 2013, doi: 10.4236/cweee.2013.23b005.

E. Sümer, S. I. Sümer, and H. Oğul, “A novel computer vision-based advertisement system for individual marketing,” Teh. Vjesn., vol. 25, no. 5, pp. 1485–1491, 2018, doi: 10.17559/TV-20161220142243.

S.-H. Lee, M.-K. Sohn, and H. Kim, “Implementation of age and gender recognition system for intelligent digital signage,” Eighth Int. Conf. Mach. Vis. (ICMV 2015), vol. 9875, no. Icmv, p. 98750I, 2015, doi: 10.1117/12.2228520.

G. Levi and T. Hassner, “Age And Gender Classification Using Convolutional Neural Networks,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2015, pp. 34–42, doi: 10.1109/AFGR.2008.4813314.

F. Gurpinar, H. Kaya, H. Dibeklioglu, and A. A. Salah, “Kernel ELM and CNN Based Facial Age Estimation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2016, pp. 80–86, doi: 10.1109/CVPRW.2016.103.

S. H. Lee et al., “Age and gender estimation using deep residual learning network,” in 2018 International Workshop on Advanced Image Technology (IWAIT), 2018, pp. 1–3, doi: 10.1109/IWAIT.2018.8369763.

J. Cheng, Y. Li, J. Wang, L. Yu, and S. Wang, “Exploiting effective facial patches for robust gender recognition,” Tsinghua Sci. Technol., vol. 24, no. 3, pp. 333–345, 2019, doi: 10.26599/TST.2018.9010090.

A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classifier gans,” 34th Int. Conf. Mach. Learn. ICML 2017, vol. 6, pp. 4043–4055, 2017.




DOI: https://doi.org/10.17509/jatikom.v7i1.27878

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Aplikasi dan Teori Ilmu Komputer

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JATIKOM is published by Universitas Pendidikan Indonesia
Jl. Dr. Setiabudhi 229 Bandung 40154, West Java, Indonesia
Website: http://www.upi.edu