Klasifikasi Penyakit Daun Tanaman Tomat Menggunakan EfficientFormer

Yaya Wihardi, Erlangga Erlangga, Amirah Dzatul Himmah, Herbert Siregar

Abstract


Tomatoes are crucial crops for Indonesian farmers, but they often suffer from diseases caused by fungi, bacteria, and viruses, leading to potential 40% yield loss. Current methods of spotting these diseases by eye result in costly and ineffective use of pesticides. This study focuses on a new way to classify tomato plant diseases using EfficientFormer. This method aims for high accuracy and fast inference time. The model reached an impressive 92% accuracy and takes just 0.4 seconds to identify diseases. This new approach could help farmers spot tomato plant diseases more accurately and quickly, potentially reducing economic losses and excessive pesticide use in Indonesia.

Keywords


EfficientFormer; MobileNet; tomatoes leaf diseases; disease identification

Full Text:

PDF

References


G. W. Sasmito, “Sistem pakar diagnosis hama dan penyakit tanaman hortikultura dengan teknik inferensi forward dan backward chaining,” J. Teknol. dan Sist. Komput., vol. 5, no. 2, pp. 69–74, 2017, doi: 10.14710/jtsiskom.5.2.2017.70-75.

E. Erlangga, H. Siregar, and Y. Wihardi, “Pengembangan Framework Mobile Learning pada Pertanian Sayuran,” J. Comput. & Bisnis, vol. 13, no. 2, pp. 58–65, 2020.

H. Rehana, M. Ibrahim, and M. H. Ali, “Plant disease detection using Region-Based Convolutional Neural Network.” 2023.

S. D. Khirade and A. B. Patil, “Plant disease detection using image processing,” Proc. - 1st Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2015, pp. 768–771, Jul. 2015, doi: 10.1109/ICCUBEA.2015.153.

M. Ishaq and M. Waqas, “Early detection of Late Blight Tomato Disease using Histogram Oriented Gradient based Support Vector Machine,” arXiv Prepr. arXiv2306.08326, 2023.

S. Thuseethan, P. Vigneshwaran, J. Charles, and C. Wimalasooriya, “Siamese Network-based Lightweight Framework for Tomato Leaf Disease Recognition,” arXiv Prepr. arXiv2209.11214, 2022.

A. Vaswani et al., “Attention is all you need,” in Advances in Neural Information Processing Systems, 2017, vol. 2017-December.

A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for Image Recognition at scale,” 2021.

Z. Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows,” 2021, doi: 10.1109/ICCV48922.2021.00986.

H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou, “Training data-efficient image transformers & distillation through attention,” in Proceedings of Machine Learning Research, 2021, vol. 139.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Jun. 2018.

Y. Li et al., “EfficientFormer: Vision Transformers at MobileNet Speed,” in Advances in Neural Information Processing Systems, 2022, vol. 35.

D. P. Hughes and M. Salathe, “An open access repository of images on plant health to enable the development of mobile disease diagnostics.” 2016.

M. A. Haque et al., “Deep learning-based approach for identification of diseases of maize crop,” Sci. Reports 2022 121, vol. 12, no. 1, pp. 1–14, Apr. 2022, doi: 10.1038/s41598-022-10140-z.

Y. Wihardi, W. M. Kristy, Erlangga, A. Turnip, I. N. Yulita, and Endroyono, “A normalized cross-correlation convolutional neural network (CNN-NCC) for exemplar-based object detection,” AIP Conf. Proc., vol. 2734, no. 1, Oct. 2023, doi: 10.1063/5.0155742/2917154.

M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for Convolutional Neural Networks,” in Proceedings of the 36th International Conference on Machine Learning, 2019, vol. 97, pp. 6105–6114, [Online]. Available: https://proceedings.mlr.press/v97/tan19a.html.




DOI: https://doi.org/10.17509/jatikom.v7i2.80339

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Universitas Pendidikan Indonesia (UPI)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JATIKOM is published by Universitas Pendidikan Indonesia
Jl. Dr. Setiabudhi 229 Bandung 40154, West Java, Indonesia
Website: http://www.upi.edu