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Abstract 

Testing in Software Development Life Cycle is one of the most crucial activities. Bug 

prioritization has been a manual process for long. Our paper provides a methodology 

for ease of bug prioritization in beta testing phase. In the methodology, data from 

various bug reports is supplied into a model and, through machine learning, the model 

outputs fairly accurate bug priority based on historical data. 
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1. Introduction 

During the last phase of software development lifecycle, just before the release, 

many software products undergo Beta Testing. Beta testing is a kind of User 

Acceptance Testing (UAT) which is performed to validate the business requirements 

[1]. UAT is the final stage of testing which is predominantly performed by 

Users/Clients/Customers before the software product is delivered. Beta testing is 

performed in the production environment. The software product is made available to 

the users. Users then have a certain amount of time during which they can use this 

product and get back to the developer in case of issues. Since beta testing is performed 

at user end, usability, efficiency, productivity and accuracy also get checked, hence, 

encompassing a larger range of requirements.  
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Normally, the bugs encountered are being prioritized manually. This is a 

cumbersome job and requires a lot of efforts. It is observed that dealing with bug 

priority quickly saves a lot of efforts and time since many bugs reported are not even 

bugs, or may be enhancements that could be worked on later. A solution to this issue is 

to automate the bug prioritization process. We have used Machine Learning technique 

to build a model capable of correctly calculating the priority of bugs provided enough 

input data. The following two questions have been addressed in this research: 

i. Which procedure needs to be followed for calculating bugs priority that 

come across in Beta Testing phase? 

ii. What are the most relevant parameters which estimate the priority of bugs?  

We have used Multiple Linear Regression [2] which falls under the umbrella of 

Supervised Learning [3]. Linear regression, being a type of supervised learning, needs 

to be provided with training data set and correct answers. Machine learning algorithm 

infers knowledge and thus learns. We have provided some facts to our model which 

ensures the accurate predictability of bug priority. We have used Forward Selection 

which makes certain that just those predictor variables whose inclusion in the model 

will yield productive results are included in the model. 

Rest of the paper is organized as follows. Section 2 is focused on methodology and 

technique, Section 3 and 4 present results and conclusion, respectively. 

2. Methods 

For performing the research, bug data have been collected from Eclipse projects. We 

have collected bugs containing columns namely “Bug ID”, “Product” in which bug was 

found, “Component” containing bug, “Assignee”, “Status” whether Open, Close etc, 

“Classification”, “Operating System”, “Resolution”, “Reporter” of the bug, 

“Hardware”, brief “Summary”, “Changed (Date)”, “Version”, “Priority” and 

“Severity”. Here, “Priority” is the response variable Y and others are taken as predictor 

variables X1, X2 … Xn. “Priority” can take five forms namely Priority 1, Priority 2, 

Priority 3, Priority 4, and Priority 5. Priority 1 points to the most important bug. 

The equation of Multiple Linear Regression then becomes [4] (see Eq. 1) 
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𝑦ᵢ =   𝛽₀ +   𝛽₁𝑥₁  +   𝛽₂𝑥₂ + ⋯ +   𝛽ₙ𝑥ₙ + 𝑒 (1) 

In Eq. 1, β0, β1 and so on show regression coefficients for input variables x1, x2 … xn 

and Y is the output or required variable. 

In our research, we have collected year wise data. We have gathered bugs between 

years 2005 and 2017. The data is then assembled in tabular form. This can be done 

using either through some tool like Excel or can be put in Minitab projects. We have 

first filled excel sheets during our study. Our gathered data can be seen in Table 1. 

Table 1. Gathered data for our study. 

Bug 

Id 
Product Comp

onent 

Assign

ee 

Status 

of bug 

Summar

y 

Date of 

Change 

Operati

ng 

System 

Priorit

y 

486823 JDT Core jdt-

core-

inbox 

NEW NPE 

logged as 

warning,er
ror 

reporter 

does not 
pop up 

29.1.16 PC Linux 3 

468307 Platform UI Platfor
m-UI-

Inbox 

NEW [Preferenc
es] Print 

margin's 

behavior 
is 

confusing 

to many 

users 

27.1.17 All All 3 

423715 Equinox p2 mn ASSIG

NED 

Add 

SHA256 
to p2 

metadata 

publishing 
(and 

prefer for 

consumpti
on if 

available) 

19.1.17 All All 3 

366471 Platform SWT lshanm
ug 

NEW [Cocoa] 
Slow 

scrolling 

in editor 
on Mac 

OS X 

09.2.17 PC Mac 
OS X 

2 

500758 Virgo runtim

e 

virgo-

inbox 

NEW Virgo 

kernel 

(services) 
timeout 

intermitte

ntly 

25.1.17 PC All 3 
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Further processing of these tables is done through a statistical software tool known 

as Minitab where we have applied Multiple Linear Regression. Minitab treats the data 

in the form of worksheets. Data can be input in multiple ways into Minitab project 

namely (i) Numeric Data or numbers, (ii) Textual data that may contain alphabets, 

special characters and (iii) spaces or Date/Time data. 

Multiple Linear Regression algorithm is executed on the input data afterwards in 

Minitab. Certain configuration details are given to the software such as corresponding 

response which is Priority in our study. Continuous as well as categorical variables are 

also been highlighted. We have in our study assigned integer values to various priority 

levels. The sole reason for this is that Minitab can only take response variables as 

continuous. These integer values are as follows. Priority 1 is assigned 1, 2 for Priority 

2, 3 for Priority level 3, Priority 4 equals 4 and 5 represents Priority 5. 

Our methodology in this study focuses on Forward Selection. Although it does count 

which methodology is being used by researchers, it is also vital that the study inspects 

individual variables so that the significance of variables be calculated. Also, it should 

be made sure that just those variables which have considerable significance on variance 

be included. A stepwise procedure should be followed where insignificant variables are 

excluded from the equation one after the other. Also, the equation must be calculated 

again after each insignificant variable is opted out. Our research uses Least Square 

Method for determining a line of best fit by trimming down the sum of squares where 

as a square is calculated by squaring the distance between a point on the plot and the 

regression line [5, 6]. 

Null Hypothesis: The null hypothesis states that the coefficient of predictor variable 

is 0. It implies that there is no association connecting the response and the predictor. 

The alpha value is 0.05 in our study. In our study the p-value has been kept as 0.05 for 

each coefficient of the predictor variable. Where the p-value is calculated to be <= 

alpha, we have considered the null hypothesis invalid. 

3. Results and Discussion 

Following are the results we got by applying Least Square method 
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Least Square Results-According to [7], range of R-sq lies between is 0 and 100%: 

a value equals to 0% is a sign that the model is not capable of explaining any of the 

variability of the response data with respect to mean. Whereas a 100% value symbolizes 

that the model encapsulates all the variability of the response data with respect to mean. 

In a broader spectrum, for higher values of R-sq, the model better fits the data. 

 

Table 2. Results for Least Square. 

S  R-sq  R-sq (adj) R-sq (pred) 

0.442041  85.16% 45.32% * 

 

We achieved in our study R-sq value equal to 85.16% as shown in Table 2. It is 

known that a priority of bugs varies. So, R-sq basically lets us know that 85.16% of the 

changeability in the priorities is clarified by the changeability in independent variables 

considered in the research. It implies that in our model, some of the invariability is still 

vague when it comes to the variation in priorities. There has to be some other 

explanation in addition to the predictor variables taken into account in this model that 

clarify the variability in response variable. The left over 14.84% is present in the 

residuals. The residuals are thought to be the vague portion of the model. 

Standard Error of Regression, also known as Standard Error of the Estimate, 

corresponds to the average distance of observed data points calculated to the mean i.e. 

the regression line. The process followed was that actual values were shown on graphs 

as plots. A regression line was then drawn through them. Regression process then 

evaluates the estimated values. A comparison was made afterwards between actual and 

estimated values. This comparison was basically the calculated distance between the 

two values. This calculated distance then represents the Standard Error of Regression. 

Lesser values of Standard Error of Regression are considered better. Lower values 

illustrate the nearness between observed values and the fitted line [7]. 

Results of the predicted response-Table 3 show the Priority column and the FIT 

column which are the actual and the estimated values respectively. Closeness of values 

is clearly evident in the Table between these two. The actual priority of bugs is 

presented in column “Priority” which was obtained from bug database of Eclipse 

projects. The “Fit” column in Table 3 displays the predicted bug priority after 
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calculation through Machine Learning algorithm. As seen in the table, the difference, 

shown by “Resid” column, between predicted and actual priority is minimal. This 

shows the applicability of our model in case of bug prediction. 

 

Table 3. Actual and Predicted Price. 

Obs  Priority  Fit Resid 

1  3.000 3.000 0.000 

2 3.000 3.000 0.000 

6 3.000 3.000 0.000 

10 5.000 5.000 -0.000 

11 5.000 5.000 0.000 

12 5.000 5.000 0.000 

13 5.000 5.000 -0.000 

14 5.000 5.000 -0.000 

15 3.000 3.000 -0.000 

18 3.000 3.000 0.000 

21 3.000 3.000 0.000 

 

Result of prediction interval and confidence interval-Predictions on new data can 

be done now by giving values as inputs in the model. Result of this activity gives some 

statistics like Predicted Interval (PI) and Confidence Interval (CI). These can be seen 

in Table 4. 

 

Table 4. PC & CI. 

 

The predicted priority of newly gathered data is shown in the column “Fit”. In the 

table, column SE Fit represents Standard Error value of the Fit. It is the deviation in the 

anticipated mean response for a certain type of setting of independent variables. 

In the testing phase of the model proposed, the results of prediction can be verified 

by reading the values presented under these columns. The prediction value for some 

new bug will most likely to fall inside the interval called PI (Prediction Interval). CI 

Variable  Setting   

Status NEW   

Reporter edward   

Hardware PC   

Fit SE Fit 95% CI 95% PI 

3 0.442041 (2.12244, 3.87756) (1.75894, 4.24106) 
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(Confidence Interval) gives the range in which the mean value is likely to fall within. 

The range covered by PI is greater than that of CI. This is due to the uncertainty 

occurring in prediction of a particular variable which isn’t the case with measuring 

mean value. 

Results of regression plots-Figure 1, Figure 2 and Figure 3 are the results of 

passing data through the regression model. These graphs, in combination with some 

additional information, tell how much normally distributed are the residuals. In Figure 

1, Frequency in Residual Histogram for Priority graph is the elevation of bars in the 

plot. Frequency is the measure of the number of observations. Density represents the 

area of each bar. It tells the quantity of the model observations. Most residuals lie 

between +0.75 and -0.75 as can be seen i.e. the graph is denser in the middle. 68% of 

the area of normal distribution is within one Standard Deviation of mean. 0 represents 

the mean. The histogram is normally spread around it. The mean is also known as the 

z-score. The distribution around mean indicates that majority of the residuals of the 

gathered data have been around the mean value of the residuals. 

 

 

Figure 1. Frequency in Residual Histogram for Priority graph. 

 

In Figure 2, Residual symbolizes the error term while percent symbolizes the 

percentage of each observation computed after applying the model. As can be observed, 

most of the blue dots are crowded together about the red line. The curve is symmetrical 

about the mean. As there is linear relationship between Residual and percent, it can be 
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deduced that the residuals have a normal distribution. So, the postulation of normality 

is valid. 

 

 

Figure 2. Normal Probability Plot. 

 

In Figure 3, Observation Order represents the sequence of input data. Some 

additional information is being provided in this figure. Negative serial correlation is 

said to exist in plots where positive error in a single observed data unit add to the 

probability of a negative error in some other observed data unit and otherwise as well. 

As observed, there is negative serial correlation in Residual vs. Order for Priority graph. 

It can be deduced from these observations that the bug priority is most probably time 

bound. If we rephrase the sentence, it can be said that the priority has varied over years. 

These variations could be the result of variation in certain independent variables over 

the years. Some comparison can be done by investigating results produced by [8]. 

Moreover, others methods in machine learning, such as [9, 10, 11] can conducted to do 

some comparison analysis in more comprehensively. The improvement in term of 

computational time can be achieved by considering methods in parallel computing and 

Big Data, such as in [12, 13, 14].  
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4. Conclusion 

An R-square value of 85.16% has been attained in our research. We can infer from 

this that our model is capable of explaining 85.16% of the variance in Priority which is 

the response variable. The left over portion which is 14.84% wasn’t explained by the 

model. A possible reason for this lack of clarity could be some missing independent 

variables in the model. Due to which 100% variation in Priority could not be predicted. 

This can serve as food for future work. 

 

 

Figure 3. Residual vs Order. 

  

Through the Histogram and Normal Probability Plot, it is apparent that our data s 

normally distributed. On the other hand, rather strange fact has been observed in the 

Residual vs. Order graph. This plot contains some negative serial correlation. This 

could mean that the data may be dependent on time factor as well. Time dependency 

could be the reason of variation in independent variables with respect to time. 

Our research shows that Multiple Linear Regression for bug prioritization is a good 

option for prediction. The model proposed by our research is suitable for prediction in 

bug priority as seen by the statistics observed. We have used Forward Selection which 

eliminates insignificant Predictors successfully. 

 Another future step for research can also be finding association between bug reports 

and time frame. Extension of our research can also be advanced in an area where more 

independent variables and their effect on response variable i.e. bug priority can be 
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assessed. Apart from broad-spectrum applications, our research can be narrowed down 

to extracting models for special purpose applications and their bugs. 
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