
24

Software Bug Prioritization in Beta Testing Using Machine

Learning Techniques

Anum Waqara

a Department of Computer Software Engineering, UET Mardan, Pakistan

anum.nwfpuet@yahoo.coma

Abstract

Testing in Software Development Life Cycle is one of the most crucial activities. Bug

prioritization has been a manual process for long. Our paper provides a methodology

for ease of bug prioritization in beta testing phase. In the methodology, data from

various bug reports is supplied into a model and, through machine learning, the model

outputs fairly accurate bug priority based on historical data.

Keywords: Bug prioritization, machine learning, linear regression, supervised learning

First draft received: May 21, 2020

Date Accepted: June 16, 2020

Final proof received: June 21, 2020

1. Introduction

During the last phase of software development lifecycle, just before the release,

many software products undergo Beta Testing. Beta testing is a kind of User

Acceptance Testing (UAT) which is performed to validate the business requirements

[1]. UAT is the final stage of testing which is predominantly performed by

Users/Clients/Customers before the software product is delivered. Beta testing is

performed in the production environment. The software product is made available to

the users. Users then have a certain amount of time during which they can use this

product and get back to the developer in case of issues. Since beta testing is performed

at user end, usability, efficiency, productivity and accuracy also get checked, hence,

encompassing a larger range of requirements.

Journal of Computers for Society
Journal homepage: https://ejournal.upi.edu/index.php/JCS

Vol. 1 No. 1, June-2020, pp. 24-34

https://ejournal.upi.edu/index.php/JCS

25

Normally, the bugs encountered are being prioritized manually. This is a

cumbersome job and requires a lot of efforts. It is observed that dealing with bug

priority quickly saves a lot of efforts and time since many bugs reported are not even

bugs, or may be enhancements that could be worked on later. A solution to this issue is

to automate the bug prioritization process. We have used Machine Learning technique

to build a model capable of correctly calculating the priority of bugs provided enough

input data. The following two questions have been addressed in this research:

i. Which procedure needs to be followed for calculating bugs priority that

come across in Beta Testing phase?

ii. What are the most relevant parameters which estimate the priority of bugs?

We have used Multiple Linear Regression [2] which falls under the umbrella of

Supervised Learning [3]. Linear regression, being a type of supervised learning, needs

to be provided with training data set and correct answers. Machine learning algorithm

infers knowledge and thus learns. We have provided some facts to our model which

ensures the accurate predictability of bug priority. We have used Forward Selection

which makes certain that just those predictor variables whose inclusion in the model

will yield productive results are included in the model.

Rest of the paper is organized as follows. Section 2 is focused on methodology and

technique, Section 3 and 4 present results and conclusion, respectively.

2. Methods

For performing the research, bug data have been collected from Eclipse projects. We

have collected bugs containing columns namely “Bug ID”, “Product” in which bug was

found, “Component” containing bug, “Assignee”, “Status” whether Open, Close etc,

“Classification”, “Operating System”, “Resolution”, “Reporter” of the bug,

“Hardware”, brief “Summary”, “Changed (Date)”, “Version”, “Priority” and

“Severity”. Here, “Priority” is the response variable Y and others are taken as predictor

variables X1, X2 … Xn. “Priority” can take five forms namely Priority 1, Priority 2,

Priority 3, Priority 4, and Priority 5. Priority 1 points to the most important bug.

The equation of Multiple Linear Regression then becomes [4] (see Eq. 1)

26

𝑦ᵢ = 𝛽₀ + 𝛽₁𝑥₁ + 𝛽₂𝑥₂ + ⋯ + 𝛽ₙ𝑥ₙ + 𝑒 (1)

In Eq. 1, β0, β1 and so on show regression coefficients for input variables x1, x2 … xn

and Y is the output or required variable.

In our research, we have collected year wise data. We have gathered bugs between

years 2005 and 2017. The data is then assembled in tabular form. This can be done

using either through some tool like Excel or can be put in Minitab projects. We have

first filled excel sheets during our study. Our gathered data can be seen in Table 1.

Table 1. Gathered data for our study.

Bug

Id
Product Comp

onent

Assign

ee

Status

of bug

Summar

y

Date of

Change

Operati

ng

System

Priorit

y

486823 JDT Core jdt-

core-

inbox

NEW NPE

logged as

warning,er
ror

reporter

does not
pop up

29.1.16 PC Linux 3

468307 Platform UI Platfor
m-UI-

Inbox

NEW [Preferenc
es] Print

margin's

behavior
is

confusing

to many

users

27.1.17 All All 3

423715 Equinox p2 mn ASSIG

NED

Add

SHA256
to p2

metadata

publishing
(and

prefer for

consumpti
on if

available)

19.1.17 All All 3

366471 Platform SWT lshanm
ug

NEW [Cocoa]
Slow

scrolling

in editor
on Mac

OS X

09.2.17 PC Mac
OS X

2

500758 Virgo runtim

e

virgo-

inbox

NEW Virgo

kernel

(services)
timeout

intermitte

ntly

25.1.17 PC All 3

27

Further processing of these tables is done through a statistical software tool known

as Minitab where we have applied Multiple Linear Regression. Minitab treats the data

in the form of worksheets. Data can be input in multiple ways into Minitab project

namely (i) Numeric Data or numbers, (ii) Textual data that may contain alphabets,

special characters and (iii) spaces or Date/Time data.

Multiple Linear Regression algorithm is executed on the input data afterwards in

Minitab. Certain configuration details are given to the software such as corresponding

response which is Priority in our study. Continuous as well as categorical variables are

also been highlighted. We have in our study assigned integer values to various priority

levels. The sole reason for this is that Minitab can only take response variables as

continuous. These integer values are as follows. Priority 1 is assigned 1, 2 for Priority

2, 3 for Priority level 3, Priority 4 equals 4 and 5 represents Priority 5.

Our methodology in this study focuses on Forward Selection. Although it does count

which methodology is being used by researchers, it is also vital that the study inspects

individual variables so that the significance of variables be calculated. Also, it should

be made sure that just those variables which have considerable significance on variance

be included. A stepwise procedure should be followed where insignificant variables are

excluded from the equation one after the other. Also, the equation must be calculated

again after each insignificant variable is opted out. Our research uses Least Square

Method for determining a line of best fit by trimming down the sum of squares where

as a square is calculated by squaring the distance between a point on the plot and the

regression line [5, 6].

Null Hypothesis: The null hypothesis states that the coefficient of predictor variable

is 0. It implies that there is no association connecting the response and the predictor.

The alpha value is 0.05 in our study. In our study the p-value has been kept as 0.05 for

each coefficient of the predictor variable. Where the p-value is calculated to be <=

alpha, we have considered the null hypothesis invalid.

3. Results and Discussion

Following are the results we got by applying Least Square method

28

Least Square Results-According to [7], range of R-sq lies between is 0 and 100%:

a value equals to 0% is a sign that the model is not capable of explaining any of the

variability of the response data with respect to mean. Whereas a 100% value symbolizes

that the model encapsulates all the variability of the response data with respect to mean.

In a broader spectrum, for higher values of R-sq, the model better fits the data.

Table 2. Results for Least Square.

S R-sq R-sq (adj) R-sq (pred)

0.442041 85.16% 45.32% *

We achieved in our study R-sq value equal to 85.16% as shown in Table 2. It is

known that a priority of bugs varies. So, R-sq basically lets us know that 85.16% of the

changeability in the priorities is clarified by the changeability in independent variables

considered in the research. It implies that in our model, some of the invariability is still

vague when it comes to the variation in priorities. There has to be some other

explanation in addition to the predictor variables taken into account in this model that

clarify the variability in response variable. The left over 14.84% is present in the

residuals. The residuals are thought to be the vague portion of the model.

Standard Error of Regression, also known as Standard Error of the Estimate,

corresponds to the average distance of observed data points calculated to the mean i.e.

the regression line. The process followed was that actual values were shown on graphs

as plots. A regression line was then drawn through them. Regression process then

evaluates the estimated values. A comparison was made afterwards between actual and

estimated values. This comparison was basically the calculated distance between the

two values. This calculated distance then represents the Standard Error of Regression.

Lesser values of Standard Error of Regression are considered better. Lower values

illustrate the nearness between observed values and the fitted line [7].

Results of the predicted response-Table 3 show the Priority column and the FIT

column which are the actual and the estimated values respectively. Closeness of values

is clearly evident in the Table between these two. The actual priority of bugs is

presented in column “Priority” which was obtained from bug database of Eclipse

projects. The “Fit” column in Table 3 displays the predicted bug priority after

29

calculation through Machine Learning algorithm. As seen in the table, the difference,

shown by “Resid” column, between predicted and actual priority is minimal. This

shows the applicability of our model in case of bug prediction.

Table 3. Actual and Predicted Price.

Obs Priority Fit Resid

1 3.000 3.000 0.000

2 3.000 3.000 0.000

6 3.000 3.000 0.000

10 5.000 5.000 -0.000

11 5.000 5.000 0.000

12 5.000 5.000 0.000

13 5.000 5.000 -0.000

14 5.000 5.000 -0.000

15 3.000 3.000 -0.000

18 3.000 3.000 0.000

21 3.000 3.000 0.000

Result of prediction interval and confidence interval-Predictions on new data can

be done now by giving values as inputs in the model. Result of this activity gives some

statistics like Predicted Interval (PI) and Confidence Interval (CI). These can be seen

in Table 4.

Table 4. PC & CI.

The predicted priority of newly gathered data is shown in the column “Fit”. In the

table, column SE Fit represents Standard Error value of the Fit. It is the deviation in the

anticipated mean response for a certain type of setting of independent variables.

In the testing phase of the model proposed, the results of prediction can be verified

by reading the values presented under these columns. The prediction value for some

new bug will most likely to fall inside the interval called PI (Prediction Interval). CI

Variable Setting

Status NEW

Reporter edward

Hardware PC

Fit SE Fit 95% CI 95% PI

3 0.442041 (2.12244, 3.87756) (1.75894, 4.24106)

30

(Confidence Interval) gives the range in which the mean value is likely to fall within.

The range covered by PI is greater than that of CI. This is due to the uncertainty

occurring in prediction of a particular variable which isn’t the case with measuring

mean value.

Results of regression plots-Figure 1, Figure 2 and Figure 3 are the results of

passing data through the regression model. These graphs, in combination with some

additional information, tell how much normally distributed are the residuals. In Figure

1, Frequency in Residual Histogram for Priority graph is the elevation of bars in the

plot. Frequency is the measure of the number of observations. Density represents the

area of each bar. It tells the quantity of the model observations. Most residuals lie

between +0.75 and -0.75 as can be seen i.e. the graph is denser in the middle. 68% of

the area of normal distribution is within one Standard Deviation of mean. 0 represents

the mean. The histogram is normally spread around it. The mean is also known as the

z-score. The distribution around mean indicates that majority of the residuals of the

gathered data have been around the mean value of the residuals.

Figure 1. Frequency in Residual Histogram for Priority graph.

In Figure 2, Residual symbolizes the error term while percent symbolizes the

percentage of each observation computed after applying the model. As can be observed,

most of the blue dots are crowded together about the red line. The curve is symmetrical

about the mean. As there is linear relationship between Residual and percent, it can be

31

deduced that the residuals have a normal distribution. So, the postulation of normality

is valid.

Figure 2. Normal Probability Plot.

In Figure 3, Observation Order represents the sequence of input data. Some

additional information is being provided in this figure. Negative serial correlation is

said to exist in plots where positive error in a single observed data unit add to the

probability of a negative error in some other observed data unit and otherwise as well.

As observed, there is negative serial correlation in Residual vs. Order for Priority graph.

It can be deduced from these observations that the bug priority is most probably time

bound. If we rephrase the sentence, it can be said that the priority has varied over years.

These variations could be the result of variation in certain independent variables over

the years. Some comparison can be done by investigating results produced by [8].

Moreover, others methods in machine learning, such as [9, 10, 11] can conducted to do

some comparison analysis in more comprehensively. The improvement in term of

computational time can be achieved by considering methods in parallel computing and

Big Data, such as in [12, 13, 14].

32

4. Conclusion

An R-square value of 85.16% has been attained in our research. We can infer from

this that our model is capable of explaining 85.16% of the variance in Priority which is

the response variable. The left over portion which is 14.84% wasn’t explained by the

model. A possible reason for this lack of clarity could be some missing independent

variables in the model. Due to which 100% variation in Priority could not be predicted.

This can serve as food for future work.

Figure 3. Residual vs Order.

Through the Histogram and Normal Probability Plot, it is apparent that our data s

normally distributed. On the other hand, rather strange fact has been observed in the

Residual vs. Order graph. This plot contains some negative serial correlation. This

could mean that the data may be dependent on time factor as well. Time dependency

could be the reason of variation in independent variables with respect to time.

Our research shows that Multiple Linear Regression for bug prioritization is a good

option for prediction. The model proposed by our research is suitable for prediction in

bug priority as seen by the statistics observed. We have used Forward Selection which

eliminates insignificant Predictors successfully.

 Another future step for research can also be finding association between bug reports

and time frame. Extension of our research can also be advanced in an area where more

independent variables and their effect on response variable i.e. bug priority can be

33

assessed. Apart from broad-spectrum applications, our research can be narrowed down

to extracting models for special purpose applications and their bugs.

References

[1] Hambling, B., & Van Goethem, P. (2013). User acceptance testing: a step-by-

step guide. BCS Learning & Development.

[2] Andrews, D. F. (1974). A robust method for multiple linear regression.

Technometrics, 16(4), 523-531.

[3] Alpaydin, E. (2020). Introduction to machine learning. MIT press.

[4] Kutlubay, O., & Bener, A. (2005). A machine learning based model for

software defect prediction. Working paper, Boaziçi University, Computer

Engineering Department.

[5] Yang, B., & Balanis, C. A. (2006). Least square method to optimize the

coefficients of complex finite-difference space stencils. IEEE Antennas and

Wireless Propagation Letters, 5, 450-453.

[6] Singh, Y., Bhatia, P. K., & Sangwan, O. (2007). A review of studies on

machine learning techniques. International Journal of Computer Science and

Security, 1(1), 70-84.

[7] Frost, J. (2014). Regression Analysis: How to Interpret S, the Standard Error

of the Regression. The Minitab Blog.

http://blog.minitab.com/blog/adventures-in-statistics/regression-analysis-

how-to-interpret-s-the-standard-error-of-the-regression

[8] Nazir, S., Shahzad, S., & Riza, L. S. (2017). Birthmark-based software

classification using rough sets. Arabian Journal for Science and Engineering,

42(2), 859-871.

[9] Riza, L. S., Janusz, A., Bergmeir, C., Cornelis, C., Herrera, F., Ślezak, D., &

Benítez, J. M. (2014). Implementing algorithms of rough set theory and fuzzy

34

rough set theory in the R package “RoughSets”. Information Sciences, 287,

68-89.

[10] Riza, L. S., Nasrulloh, I. F., Junaeti, E., Zain, R., & Nandiyanto, A. B. D.

(2016). gradDescentR: An R package implementing gradient descent and its

variants for regression tasks. In 2016 1st International Conference on

Information Technology, Information Systems and Electrical Engineering

(ICITISEE) (pp. 125-129). IEEE.

[11] Mulyani, Y., Rahman, E. F., & Riza, L. S. (2016). A new approach on

prediction of fever disease by using a combination of Dempster Shafer and

Naïve bayes. In 2016 2nd International Conference on Science in Information

Technology (ICSITech) (pp. 367-371). IEEE.

[12] Riza, L. S., Pratama, F. D., Piantari, E., & Fashi, M. (2020). Genomic repeats

detection using Boyer-Moore algorithm on Apache Spark Streaming.

Telkomnika, 18(2), 783-791.

[13] Riza, L. S., Rachmat, A. B., Munir, T. H., & Nazir, S. (2019). Genomic Repeat

Detection Using the Knuth-Morris-Pratt Algorithm on R High-Performance-

Computing Package. Int. J. Advance Soft Compu. Appl, 11(1), 94-111.

[14] Riza, L. S., Dhiba, T. F., Setiawan, W., Hidayat, T., & Fahsi, M. (2019).

Parallel random projection using R high performance computing for planted

motif search. Telkomnika, 17(3), 1352-1359.

