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Abstract 

Diarrhea is the second disease that causes death in children in the world. Every year, 

around 1.7 million cases of diarrhea are found and cause around 525,000 deaths in 

children under the age of five in the world. Proper analysis of health service data can 

help predict epidemics, cure, and disease, and improve quality of life and avoid 

preventable deaths. This research is aimed at predicting diarrhea sufferers in the future 

by using Seasonal Autoregressive Integrated Moving Average (SARIMA) and Seasonal 

Autoregressive Integrated Moving Average with explanatory X (SARIMAX) by 

involving climate factors in the form of average temperature and average humidity. The 

data used are data of diarrhea sufferers and climate in 2010-2019 in the city of Bandung. 

The result shows that there is not significant relation between temperature or humidity 

and the diarrhea cases. However, the SARIMA model had performed better than the 

SARIMAX model with the addition of climate factors to predict the diarrhea case in 

Bandung. The predictive accuracy of the SARIMA model obtained is 78.6%.  
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1. Introduction 

Diarrhea is the second disease that causes death in children in the world. Every year, 

around there are 1.7 million cases of diarrhea and cause around 525,000 deaths in 

children under the age of five in the world [1]. Unclean water and poor sanitation are 

the main factors of diarrheal disease in children under the age of five years [2]. 

Diarrhea diseases are classified based on critical level to two shorts [3]. The Diarrhea 

on the lasting less than two weeks is classified as acute diarrhea, whereas diarrhea 
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lasting two weeks or more is classified as chronic diarrhea. Patients' feces can be 

accompanied by mucus, blood, or pus. Some of the symptoms that can be experienced 

are nausea, vomiting, abdominal pain, heartburn, tenesmus, fever, and signs of 

dehydration. The risk factors for acute diarrhea are personal hygiene, bad sanitary, the 

history of lactose intolerance, and the sexually transmitted infections such as HIV 

infection. However, personal hygiene and bad sanitary conditions contribute for the 

most number of the diarrhea cases.   

Previous studies have reported a relationship between weather and diarrhea in 

several places, such as in Taiwan by using the Spearman's Correlation and Regression 

Analysis method to conclude a relationship between temperature and rainfall in diarrhea 

cases [4], in Sub-Saharan Africa by using the Ordinary Least method Square (OLS) 

Regression concludes there is a relationship between temperature and diarrhea cases 

[5]. Then in Bangladesh using Statistical Analysis concluded the case of diarrhea 

increased when temperatures were higher [6]. By analyzing and knowing the 

relationship between weather and diarrhea, we can predict or predict future diarrhea 

cases. 

There are so many previous researches about Forecasting or prediction using time 

series analysis. One of the methods that are considered to have good accuracy for time 

series analysis is the Autoregressive Integrated Moving Average method which is 

briefly ARIMA [7]. This ARIMA method has been implemented for forecasting such 

as forecasting in food retailing [8], forecasting on short term load electricity [9], and 

forecasting fuel demand in Turkey [10]. For models that have a seasonal trend, Seasonal 

ARIMA (SARIMA) has been implemented in leishmaniasis disease forecasting in Iran 

[11] and short-term traffic flow forecasting in India [12]. The ARIMA method with 

explanatory variable X (ARIMAX) has also been implemented in export forecasting in 

Thailand [13], forecasting demand for children's Muslim clothes [14], and non-Nigerian 

oil exports [15]. Then the ARIMA seasonal method with explanatory variable X 

(SARIMAX) was implemented in the prediction of photovoltaic power plants [16]. 

Appropriate analytical tools enable health specialists to collect and analyze patient 

data, which can be used by insurance agents and administrative organizations. Beside 

of that, the proper analysis of health service data could help to predict epidemics, cure, 

and disease as well as improve quality of life and avoid preventable deaths [17]. 



63 

 

This study was conducted to build a prediction model for Diarrhea Sufferers in 

Bandung, Indonesia. The Pearson Correlation was use to figure out the correlation 

between the temperature, humidity and the diarrhea cases in Bandung. Moreover, the 

SARIMA and SARIMAX were used to build the prediction model. If the temperature 

or humidity has good correlation with the number of diarrhea sufferers, then forecasting 

using SARIMAX with temperature or humidity can be expected to produce a better 

model.  

2. Methods 

There are four main stages to build a prediction model (see Figure 1): preprocessing 

data, build SARIMA model, build SARIMX model and model validation. All steps are 

explained in the next subsection.  

 
 Figure 1. Design of prediction research for diarrhea sufferers using the SARIMA and 

SARIMAX methods 
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2.1 Data set and Pre-processing Data 

In this study we consider the diarrheal diseases case in Bandung to be predicted. 

There are two kinds of data set that we use in this study:  diarrheal diseases and weather. 

In accordance to the study objectives which is to predict the diarrheal case monthly, all 

the data set are present in monthly period. Diarrheal case data was carried out by health 

ministry observation of Bandung for 5 years form 2010-2019. The weather data was 

downloaded from Meteorological, Climatology, and Geophysical agency (BMKG) 

Bandung, and it consists temperature and humidity data. 

Before building the model prediction, there were two initial steps to prepare the data 

to be processed. These stages becomes very important because it determines the quality 

of the data which will greatly affect the predicted results of the model being built. The 

three stages of data preparation were the process of missing value handling, and the 

search for correlation values between the dependent variable and the independent 

variable. 

The missing value handling in sessional data was done by filling it with the mean of 

the values in the same phase in others period. For example, we have a missing value for 

diarrheal case number in January 2019. This missing value was filled by the average of 

diarrheal case number in January for 5 years before.  From the collected data, there 

were 15 missing values for diarrhea case data, 3 missing value for the temperature and 

humidity. All the missing value was filled with the mean data of value from the same 

phase in others year. The sample data can be seen in Table 1.  

The next step in the preprocessing was finding the correlation between dependent 

and independent variable. In this case, the dependent variable is the diarrhea and the 

independent variables are temperature and humidity. Pearson correlation was used to 

find the correlation value between diarrhea and temperature, diarrhea and humidity.  

Pearson correlation value could explain the relationship between two linear variables. 

Variables have a positive correlation if the value of the Pearson correlation approaches 

1, and has a negative correlation if the value approaches -1. 
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Table 1. Data of diarrhea, temperature, and humidity. 

Data in 2010 
Month Diarrhea Temperature Humidity 

January 5023 23,48 79,30 

February 4830 23,61 80,22 

March 4595 23,72 79,85 

April 4851 23,97 80,39 

May 4737 23,85 79,34 

June 4530 23,44 77,24 

July 4980 22,90 74,75 

August 4739 23,29 70,95 

September 4511 23,70 70,11 

October 5423 24,04 73,05 

November 5879 23,50 81,40 

December 5258 23,81 79,70 

   

While the variable does not correlate it has a value of 0. The equation to find the Pearson 

correlation value is expressed by Eq. 1 and Eq. 2 [19]. 

 

𝑟𝑥,𝑦 =  
∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥)2𝑛
𝑖=1 ∑ (𝑦𝑖 − 𝑦)2𝑛

𝑖=1

 (1) 

𝑟𝑥,𝑦 =  
∑ 𝑥𝑖𝑦𝑖 −

∑ 𝑥𝑖 ∑ 𝑦𝑖

𝑛

√∑ 𝑥𝑖
2 −

(∑ 𝑥𝑖)2

𝑛
√∑ 𝑦𝑖

2 −
(∑ 𝑦𝑖)2

𝑛

 (2) 

 

where r is the Pearson correlation value between the variables x and y, and n is the 

amount of data. 

2.2 SARIMA Modelling 

SARIMA modelling was done in four stages: stationary test, identify model function 

based on the plot of the Autocorrelation Function (ACF) and Partial Autocorrelation 
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Function (PACF), estimation the model parameters and conduct diagnostic test on the 

model. 

 Stationary Test 

Stationary test is a vital step in build a prediction model. Using non-stationary data 

would lead the result of the prediction model become poor. However, to build a 

prediction model using seasonal data must be transform the data into the stationary data 

form. Therefor the stationary test must be performed to make sure that the data was 

stationer. This test was done by observing the Autocorrelation Function (ACF) plot and 

histogram data distribution. ACF plot would show the stationary of mean data. If the 

ACF plot shows that data decline too fast and tend to 0, then it can be ascertained that 

the data is non-stationary, on contrary if the decline is very slow or tends not to 

approach 0 the data is stationary. ACF value was calculated using Eq. 3 [20]. 

𝜌𝑘 =
∑ (𝑍𝑡 − 𝑍)(𝑍𝑡−𝑘 − 𝑍)𝑛

𝑡=𝑘+1

∑ (𝑍𝑡 − 𝑍)2𝑛
𝑡=1

    𝑘 = 1,2, … (3) 

Where: 

𝜌𝑘     = correlation coefficient -lag 

𝑍𝑡     = observation value at 

𝑍𝑡−𝑘 = observation value at (𝑡 + 𝑘) 

𝑍       = average observation value 

 

 Specify the Sessional Model 

The second step was identifying the model function to specify the sessional model by 

observing the ACF plot and Partial Autocorrelation Function (PACF) plot. PACF 

partially calculate the correlation between value t and value t+1, without being 

influenced by the value among them. While ACF calculate the correlation between 

value t and value t+1 and still consider the value among them overall. The Partial 

Autocorrelation Function (PACF) is expressed by Eq. 4 [20].   

∅𝑘𝑘 =
𝜌𝑘 − ∑ ∅𝑘−1,𝑗𝜌𝑘−𝑗

𝑘−1
𝑗=1

1 − ∑ ∅𝑘−1,𝑗𝜌𝑗
𝑘−1
𝑗=1

 (4) 

Where: 

∅𝑘𝑘 = partial autocorrelation coefficient lag-k. 
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∅𝑘𝑗 =  ∅𝑘−1,𝑗 − ∅𝑘𝑘∅𝑘−1,𝑗−1               𝑗 = 1,2, … 𝑘 − 1  

 

The result of these plots observation will determine the sessional model that would 

build. For example, the plots will determine what session or how many phase would be 

used in one session or one period of data. It would be one session consists of 6 phases 

or 12 phases.     

 Parameter Estimation for SARIMA 

After the session model was determine, the next step was building the SARIMA model. 

SARIMA is an ARIMA model by adding seasonal components. In general, the 

SARIMA model (p, d, q) (P, D, Q) in Eq. 5. [18]. 

 

𝜙
𝑝

(𝐵)𝛷𝑃(𝐵𝑠)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑍𝑡 = 𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑠)𝑒𝑡 (5) 

 

Where 𝜙
𝑝

(𝐵) = (1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝) is an AR process(p), 𝜃𝑞(𝐵) = (1 − 𝜃1𝐵 − ⋯ −

𝜃𝑞𝐵𝑞) is a MA process(q), 𝛷𝑃(𝐵) = (1 − 𝛷1𝐵𝑠 − ⋯ − 𝛷𝑃𝐵𝑠 𝑥 𝑃) is a seasonal AR(P), 

𝛩𝑄(𝐵) = (1 − 𝛩1𝐵𝑠 − ⋯ − 𝛩𝑄𝐵𝑠 𝑥 𝑄)  is a seasonal MA process(Q), (1 − 𝐵)𝑑 is a 

differencing process, (1 − 𝐵𝑠)𝐷 is a seasonal differencing process,  𝑍𝑡 is the time series 

and 𝑒𝑡 is error value. 

In SARIMA modelling, some parameters were needed. Building some models with 

different parameters then identified the best model by conducting diagnostic test were 

did to get the best prediction model. 

 Diagnostic test 

The diagnostic test plays an important role to decide the best prediction model.  

Therefore, the last step to build the SARIMA model is conducting diagnostic tests on 

model residuals using the Ljung-box test Eq. 6 [21].  

 

𝑄𝑀 = 𝑛(𝑛 + 2) ∑
𝑟𝑘

2

𝑛 − 𝑘

𝑀

𝑘=1

 (6) 

 

Where 𝑄𝑀is the chi-square distribution M-lag and 𝑟𝑘  is the value of the ACF at the k-

lag. Furthermore, the model is considered feasible if it has residuals that are white noise.  
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The best model could be known from the smallest AIC value and the largest log-

likelihood value. Akaike's Information Criterion (AIC) is expressed by Eq. 7 [20]. 

𝐴𝐼𝐶 =  −2 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒ℎ𝑜𝑜𝑑)  + 2𝑘 (7) 

where 𝑘 = 𝑝 + 𝑞 + 1. 

2.3 SARIMAX Modelling 

The extension of the SARIMA model is the SARIMA model with explanatory variable 

X, also called SARIMAX (p, d, q) (P, D, Q) s. Both models were used to build a 

sessional model. The comparisons of SARIMA and SARIMAX was carried out for 

build a forecasting power plants model [16]. In some data period, SARIMAX had better 

performance, while in another data period, SARIMA showed better prediction [16]. 

SARIMA model which was originally univariate becomes multivariate. In general, the 

SARIMAX model (p, d, q) (P, D, Q) in Eq. 8. [16]. 

 

𝜙
𝑝

(𝐵)𝛷𝑃(𝐵𝑠)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑍𝑡 =  𝛽1𝑋1,𝑡 + ⋯ + 𝛽𝑘𝑋𝑘,𝑡 + 𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑠)𝑒𝑡 (8) 

𝑋𝑘,𝑡 is the k independent variable or the k-explanatory variable at time t with 𝑘 =

1,2,3, … , 𝑘.   

 

All results from the SARIMA modelling steps before the estimating SARIMA 

parameter, would be used to build SARIMAX model. In Eq 8 The X variable is the 

independent variable that have been identified in the previous steps. In this study, 

Temperature and humidity were the independent variables. Both independent variables 

could be used for the SARIMAX modelling or choose one of them that has better 

correlation with dependent variable. 

 Diagnostic Test 

Diagnostic test were always done to find the best model. As was done when building 

the SARIMA model, diagnostic test process was conducted using Ljung-box test and 

Akaike's Information Criterion (AIC). 
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2.4 Model Validation 

Model validation was done by calculating the value of the mean absolute percentage 

error (MAPE) (see Eq. 9) and root mean square error (RMSE) (see Eq. 10). MAPE will 

visual the absolute error occurs which is it robust to the outlier errors, while the RMSE 

will be more sensitive if any outlier error. However, both validation model could be 

used for considering the best prediction model.    

𝑀𝐴𝑃𝐸 =
∑ |

𝑥𝑡 − 𝑓𝑡

𝑥𝑡
|𝑛

𝑡=1

𝑛
𝑥100% 

(9) 

Where:  

𝑛 = amount of data 

𝑥𝑡 =  actual value in the t-period 

𝑓𝑡 = forecast value in the t-period 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 = √
∑ (𝑥𝑡 − 𝑓𝑡)2𝑛

𝑡=1

𝑛
 (10) 

3. Results and Discussion 

From the experiments that have been carried out, the following are the results and 

explanation for each stage that has been carried out. Some of them are pre-processing 

stages, SARIMA modeling, SARIMAX modelling and validation model. 

3.1 Pre-processing Data 

The objective of pre-processing data is providing high quality data which was ready to 

train for data modelling. As explained before (see section 2.1), in this study some 

missing values was found and has been solved by filling with the mean value. 

Furthermore, it has been found that Diarrhea and temperature sufferers have Pearson 

correlation value = -0.166, diarrhea and humidity sufferers data = 0.181, temperature 

and humidity = -0.162. It can be concluded that the incidence of diarrhea is not affected 

by temperature or humidity from our Data. This result was different with the previous 
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result in Taiwan [4], Africa [5], and Bangladesh [6]. This might happen due to the 

climate in Bandung is stable, while in the previous research those country has various 

seasons. 

3.2 SARIMA and SARIMAX Modeling 

Based on the ACF plot in Figure 2, the diarrhea sufferer data is not stationary in the 

average and has a seasonal component of 6 or 12. Because the data is not stationary, 

non-seasonal differencing needs to be done. After performing the first non-seasonal 

differencing, the ACF plot in Figure 3 shows that the data is stationary. 

Next, identify the model by observing the ACF and PACF plots after doing seasonal 

differencing 6 and 12. P orders can be identified through a significant lag in PACF and 

P orders can be identified through significant seasonal lags in PACF. Whereas order q 

can be identified through significant lags in ACF and order Q can be known through 

significant seasonal lags in ACF. 

The ACF sufferers of diarrhea after differencing 1 and seasonality 6 plot can be seen 

in Figure 4, and the PACF plot can be seen in Figure 5. 

 

  

Figure 2. ACF diarrhea sufferer. Figure 3. ACF diarrhea sufferers after 

differencing 1. 
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Figure 4. ACF sufferers of diarrhea 

after differencing 1 and seasonality 6. 

Figure 5. PACF diarrhea sufferers after 

differencing 1 and seasonality 6. 

 

By observing seasonal ACF and PACF plots 6 in Figure 4 and Figure 5, a significant 

ACF plot at lags 0, 2, and 6 then plot PACF significant at lags 0, 2, 6, 12, and 18, then 

seasonal 6 whereas for seasonal 12 in Figure 6 and Figure 7, the ACF plot is significant 

at lags 0, 2, and 12 then the PACF plot is significant at lags 0, 2, 5, and 12, then seasonal 

12 can be performed. 

  

Figure 6. ACF sufferers of diarrhea 

after differencing 1 and seasonal 12. 

Figure 7. PACF sufferers of diarrhea 

after differencing 1 and seasonal 12. 

 

Based on ACF and PACF seasonal plots 6 and 12, the authors obtain several 

estimated model parameters and perform diagnostic tests using ljung-box tests on 

residuals, calculating the AIC and log-likelihood values. The diagnostic test results of 

the SARIMA model can be seen in Table 2. 
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Table 2. SARIMA diagnostic test results. 

Model SARIMA Log likelihood AIC White noise 

SARIMA(2,1,2)(0,1,0)6 -823,202 1656,404 No 

SARIMA(2,1,2)(1,1,1)6 -741,883 1497,766 Yes 

SARIMA(2,1,0)(1,1,0)6 -771,365 1550,729 Yes 

SARIMA(2,1,2)(0,1,0)12 -764,608 1539,215 No 

SARIMA(2,1,2)(1,1,1)12 -635,092 1284,124 Yes 

SARIMA(2,1,0)(1,1,0)12 -664,333 1336,665 No 

 

The best model is a model that has the smallest AIC value, has the largest log-

likelihood value, and residuals are white noise. From the diagnostic tests of each model 

in Table 2, the best model in season 6 is obtained by the SARIMA model (2,1,2) (1,1,1) 

6 and the best model in season 12 is the SARIMA model (2,1, 2) (1,1,1) 12. 

Then add the independent variable or explanatory variable X to the best SARIMA 

model to build the SARIMAX model and conduct diagnostic tests on each model. The 

diagnostic test results in the SARIMAX model can be seen in Table 3. 

 

Table 3. SARIMAX diagnostic test results. 

Model SARIMAX 
Log like-

lihood 
AIC 

White 

noise 

SARIMAX(2,1,2)(1,1,1)6 -Temperature -740,673 1497,345 Yes 

SARIMAX(2,1,2)(1,1,1)6 -Humidity -745,3 1506,601 Yes 

SARIMAX(2,1,2)(1,1,1)6 -Temperature & Humidity -743,625 1505,25 Yes 

SARIMAX(2,1,2)(1,1,1)12 -Temperature -637,162 1290,324 Yes 

SARIMAX(2,1,2)(1,1,1)12 -Humidity -633,151 1282,302 Yes 

SARIMAX(2,1,2)(1,1,1)12 -Temperature & 

Humidity 

-636,139 1290,278 Yes 
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3.3 Simple Prediction 

Simple prediction using the average in the same month is done by taking the average 

value every month from the last 5 years (2014-2018). The average value of each month 

in 2014-2018 can be seen in Table 4. 

 

Table 4. Average diarrhea sufferers in 2014-2018. 

Month Diarrhea sufferers 

January 4618 

February 4759 

March 4386 

April 4316 

May 4222 

June 3915 

July 4427 

August 4756 

September 4923 

October 5059 

November 5167 

December 4796 

 

Figure 8 is showing the SARIMA (2, 1, 2)(1, 1, 1) prediction graph, meanwhile 

Figure 9 is showing SARIMA (2, 1, 2)(1, 1, 1)12 prediction graph. For SARIMA (2, 

1, 2)(1, 1, 1)6 with a temperature prediction graph see Figure 10, and the one with 

humidity prediction see Figure 11. Figure 12 is SARIMAX (2, 1, 2) (1, 1, 1)6 with 

temperature and humidity prediction graph. 

Figure 13 shows SARIMA (2, 1, 2)(1, 1, 1)12 with a temperature prediction graph, 

for the one with humidity prediction sees Figure 14. The prediction of SARIMA (2, 1, 

2)(1, 1, 1)12 with temperature and humidity prediction see Figure 15. 

 



74 

 

 

Figure 8.  SARIMA(2, 1, 2)(1, 1, 1)6 prediction graph. 

 

Figure 9. SARIMA(2, 1, 2)(1, 1, 1)12 prediction graph. 

 

Figure 10. SARIMAX(2,1,2)(1,1,1)6 with temperature prediction graph. 

 

Figure 11. SARIMAX(2,1,2)(1,1,1)6 with humidity prediction graph. 
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Figure 12. SARIMAX(2,1,2)(1,1,1)6 with temperature & humidity prediction graph. 

 

Figure 13. SARIMAX(2,1,2)(1,1,1)12 with temperature prediction graph. 

 

Figure 14. SARIMAX(2,1,2)(1,1,1)12 with humidity prediction graph. 

 
Figure 15 SARIMAX(2,1,2)(1,1,1)12 with temperatur & humidity prediction graph. 

3.4 Validation Results 

Model accuracy validation was done using MAPE and RMSE calculations on the 

2019 prediction results of the actual data in 2019. Furthermore, analyzing the ability of 
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the model to follow the pattern of actual data. Validation results can be seen in Tables 

4 and Table 5. 

Table 4. Prediction accuracy. 

Model 
Prediction 

RMSE MAPE 

SARIMA(2,1,2)(1,1,1)6 884,38 21,40 

SARIMA(2,1,2)(1,1,1)12 935,44 22,37 

SARIMAX(2,1,2)(1,1,1)6 -Temperature 1058,71 26,01 

SARIMAX(2,1,2)(1,1,1)6 -Humidity 1144,95 27,97 

SARIMAX(2,1,2)(1,1,1)6 -Temperature & Humidity 1072,14 26,07 

SARIMAX(2,1,2)(1,1,1)12 -Temperature 1042,56 25,17 

SARIMAX(2,1,2)(1,1,1)12 -Humidity 1016,13 24,16 

SARIMAX(2,1,2)(1,1,1)12 -Temperature & Humidity  1046,05 25,41 

Simple prediction 833,52 19,80 

 

Simple prediction using the average in the same month produces smaller error values 

compared to the SARIMA and SARIMAX models, but in the ability to predict results 

follow the actual data patterns, the SARIMA and SARIMAX models show better 

results. 

Table 5. The ability of the model to follow the pattern. 

Model Prediction 

SARIMA(2,1,2)(1,1,1)6 72,73% 

SARIMA(2,1,2)(1,1,1)12 54,55% 

SARIMAX(2,1,2)(1,1,1)6 -Temperature 54,55% 

SARIMAX(2,1,2)(1,1,1)6  -Humidity 72,73% 

SARIMAX(2,1,2)(1,1,1)6  -Temperature & Humidity 36,36% 

SARIMAX(2,1,2)(1,1,1)12  -Temperature 72,73% 

SARIMAX(2,1,2)(1,1,1)12  -Humidity 63,64% 

SARIMAX(2,1,2)(1,1,1)12  -Temperature & Humidity 63,64% 

Simple prediction 54,54% 
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4. Conclusions  

After conducting this research, authors reached several conclusions. From the data 

collection, temperature and humidity do not have a significant relationship with the case 

of diarrhea in Bandung. Nonetheless, we build a model to predict the diarrhea sufferers 

using SARIMA and SARIMAX model. In comparison with the model SARIMAX, 

SARIMA models produce better accuracy. The best model for prediction is the 

SARIMA model (2,1,2) (1,1,1) 6 with MAPE = 21,40 and the ability to follow the 

pattern of 72.73%. For the future research we propose to use more diarrhea data set and 

consider spatial information in building the model prediction. We propose that future 

work, based on the allegation that the spatial information might has more role for 

sanitary condition rather than temperature or humidity.   
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