Distribusi Weibull-Normal{Log-Logistik} dan Aplikasinya (Studi Kasus Data Waktu Bertahan Hidup Pasien Penderita Jantung Koroner yang Diberikan Treatment Bypass)

Winda Sari Sukarna, Nar Herrhyanto, Fitriani Agustina

Abstract


Penelitian ini bertujuan menggabungkan distribusi Weibull, normal, dan log-logistik dengan metode transformasi transformator untuk mendefinisikan distribusi Weibull-normal{log-logistik} (WNLL). Distribusi WNLL akan diaplikasikan untuk menganalisis data waktu bertahan hidup pasien penderita jantung koroner yang diberikan treatment bypass. Penelitian ini termasuk statistika terapan yang berkaitan dengan analisis data uji hidup. Hasil penelitian menunjukkan distribusi WNLL memiliki nilai Akaike Information Criterion (AIC) yang paling kecil dibandingkan ketiga distribusi lainnya, maka distribusi WNLL dipilih menjadi distribusi untuk data waktu bertahan hidup pasien penderita jantung koroner yang diberikan treatment bypass yang akan digunakan untuk analisis lebih lanjut.

Keywords


distribusi WNLL dan aplikasinya, penderita jantung koroner yang diberikan treatment bypass

Full Text:

PDF

References


Aljarrah, M. A., Lee, C., & Famoye, F. (2014). On Generating T-X Family of Distributions Using Quantile Functions . Journal of Statistical Distributions and Applications , 1-17.

Al-Shomrani, A. A., Shawky, A. I., Arif, O. H., & Aslam, M. (2016). Log-Logistic Distribution for Survival Data Analysis Data MCMC. SpringerPlus 5:1774.

Alzaatreh, A. Y., Lee, C., & Famoye, F. (2013). A New Method for Generating Families of Continuous Distributions. Metron Vol.71(1), 63-79.

Alzaatreh, A., Famoye, F., & Lee, C. (2013). Weibull-Pareto Distributions and Its Applications . Communications in Statistics-Theory and Methods , 1673-1691.

Alzaatreh, A., Lee, C., & Famoye, F. (2014). T-Normal Family of Distributions: A New Approach To Generalize The Normal Distribution. Journal of Statistical Distributions and Applications , 1-16.

Bastoni, G. A. (2019). Distribusi Alpha Power Weibull. Skripsi. FMIPA. Matematika. Universitas Indonesia. Depok.

Cavanaugh, J. E., & Neath, A. A. (2019). The Akaike Information Criterion: Background, Derivation, Properties, Application, Interpretation, and Refinements. WIREs Computational Statistics Vol.11(3).

Eugene, N., Lee, C., & Famoye, F. (2002). Beta Normal Distributions and Its Applications . Communications in Statistics-Theory and Methods , 497-512.

Famoye, F., Akarawak, E., & Ekum, M. (2018). Weibull-Normal Distribution and Its Applications. Journal of Statistical Theory and Applications Vol.17(4), 719-727.

Harlan, J. (2017). Analisis Survival. Depok: Gunadarma.

Hede, R. P. (2016). Perbandingan Metode Kuadrat Terkecil dan Metode Kemungkinan Maksimum dalam Penggunaan Parameter Distribusi Weibull dengan Dua Parameter. Skripsi. FST. Matematika. Universitas Sanata Dharma. Yogyakarta.

Herrhyanto, N. (2013). Statistika Inferensial secara Teoritis. Bandung: Penerbit Yrama Widya .

Hogg, R. V., & Craig, A. T. (1978). Introduction to Mathematical Statistics Fourth Edition. United State of America: Prentice Hall, Inc.

J, K., Ngesa, O., & Orwa, G. (2019). On Generalized Gamma Distribution and Its Application to Survival Data. International Journal of Statistics and Probability, Vol.8(5), 85-102.

Lee, C., Famoye, F., & Alzaatreh, a. A. (2013). Methods for Generating Families of Univariate Continuous Distributions In The Recent Decades. WIREs Computational Statistics, 219-238.

Lukitasari, A. D., Setiawan, A., & Sasongko, L. R. (2015). Bayesian Survival Analysis untuk Mengestimasi Parameter Model Weibull-Regression Pada Kasus Ketahanan Hidup Pasien Penderita Jantung Koroner. JdC Vol.4(1), 25-33.

Otaya, L. G. (2016). Distribusi Probabilitas Weibull Dan Aplikasinya. Jurnal Manajemen Pendidikan Agama Islam Vol.4(2), 44-66.

Paramitha, D. (2018). Pemrograman R untuk Distribusi Gamma-Normal. Skripsi. FMIPA. Matematika. Universitas Sriwijaya. Palembang.

Santana, T. V., Ortega, E. M., Cordeiro, G. M., & Silva, a. G. (2012). The Kusmaraswamy-Log-Logistic Distribution. Journal of Statistical Theory and Applications , 265-291.

Simanjuntak, J. (n.d.). Distribusi Normal. Academia. Retrieved from Distribusi Normal: https://www.academia.edu/6860648/Distribusi_Normal_Distribusi_normal

Tahir, M. H., Mansoor, M., Zubair, M., & Hamedani, G. (2014). McDonald Log-Logistic Distribution With an Application to Breast Cancer Data . Journal of Statistical Theory and Applications, Vol. 13(1), 65-82.

Wulandari. (2014). Pemodelan Hujan Ekstrim Di Kota Pekanbaru Dengan Menggunakan Fungsi Distribusi Generalized Pareto (Studi Kasus : BMKG Pekanbaru). Skripsi. FST. Matematika. Universitas Islam Negeri Sultan Syarif Kasim Riau. Pekanbaru.




DOI: https://doi.org/10.17509/jem.v9i1.33440

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Jurnal EurekaMatika

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.