Pemodelan Perambatan Gelombang Mixed Rossby-Gravity di Lapisan Stratosfer Bawah Menggunakan Algoritma Linier Gauss-Newton
Abstract
The energy transfer process transported by equatorial atmospheric waves has a potential effect on climate change issues. For detecting wave propagation, an analysis of the vertical atmospheric profile could be obtained from radiosonde balloon observations. This study aims to apply the Gauss-Newton linear algorithm model on the temperature (T) and the northward wind component (v) variables in the lower stratosphere, the layer around the altitude of 21 km above sea level. Fluctuations of T and v triggered a non-linear problem in determining the wave parameters, including amplitude and phase. These two parameters are examined using a non-linear inversion method with a linear Gauss-Newton approximation. The results showed that fluctuations in T and v of the model and observation data coincide with the value range -4.5 to 4.5 K (cold-warm) and -15 to 15 m/s (southward-northward wind). There is a movement in T fluctuations to the westward in the period of 13–24 April 2021. Likewise, a similar movement in v fluctuations was indicated during 13–22 May 2021. The westward propagation represented the propagation of the Mixed Rossby-gravity wave.
Keywords: Atmospheric Waves, Gauss-Newton Linear Method, Northward Wind Component, Temperature.
Abstrak
Proses transfer energi yang dibawa gelombang atmosfer ekuatorial berpotensi mempengaruhi isu perubahan iklim. Untuk mendeteksi perambatan gelombang dapat dilakukan analisis data vertikal atmosfer dari pengamatan balon radiosonde. Penelitian ini bertujuan menerapkan model algoritma linier Gauss-Newton terhadap variabel temperatur (T) dan komponen angin utara-selatan (v) di lapisan stratosfer bawah atau ketinggian 21 km di atas permukaan laut. Fluktuasi T dan v memunculkan masalah non-linier dalam pencarian parameter gelombang berupa amplitudo dan fasa. Kedua parameter tersebut dicari menggunakan metode inversi non-linier dengan pendekatan linier Gauss-Newton. Hasil penerapan model menunjukkan nilai yang berhimpit pada fluktuasi T dan v dengan rentang nilai –4,5 hingga 4,5 K (dingin-hangat) dan –15 sampai 15 m/s (arah angin menuju selatan-utara). Untuk variabel T, terlihat adanya pergerakan menuju ke arah barat pada rentang waktu 13–24 April 2021, demikian pula pada variabel v terdeteksi pergerakan ke arah yang sama untuk rentang waktu 13–22 Mei 2021. Perambatan gelombang ke arah barat ini merepresentasikan penjalaran gelombang Mixed Rossby-Gravity.
Keywords
Full Text:
PDFReferences
Andarini, D. F., & Noersomadi, N. (2020). Deteksi pengaruh gelombang Kelvin pada fluktuasi uap air di tropopause menggunakan model inversi. Majalah Geografi Indonesia, 34(1), 63-71.
Broto, S., & Afifah, R. S. (2008). Pengolahan data geolistrik dengan metode schlumberger. Teknik, 29(2), 120-128.
Chen, G., & Huang, R., (2009), Interannual variations in mixed Rossby–gravity waves and their impacts on tropical cyclogenesis over the Western North Pacific. Journal of Climate, 22(3), 535-549.
Dirksen, R. J., Sommer, M., Immler, F. J., Hurst, D. F., Kivi, R., & Vömel, H. (2014). Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde. Atmospheric Measurement Techniques, 7(12), 4463-4490.
Fujiwara, M., & Takahashi, M. (2001). Role of the equatorial Kelvin wave in stratosphere‐troposphere exchange in a general circulation model. Journal of Geophysical Research: Atmospheres, 106(D19), 22763-22780.
Holton, J. R. (1973). An introduction to dynamic meteorology. American Journal of Physics, 41(5), 752-754.
Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H., & Roundy, P. E., (2009), Convectively coupled equatorial waves. Reviews of Geophysics, 47(2), 1-42.
Lelievre, P. G., & Oldenburg, D. W. (2006). Magnetic forward modelling and inversion for high susceptibility. Geophysical Journal International, 166(1), 76-90.
Lubis, S. W., & Setiawan, S. (2010). Identifikasi gelombang Kelvin atmosfer ekuatorial di Indonesia berbasis data NCEP/NCAR reanalysis I. Jurnal Fisika Himpunan Fisika Indonesia, 10(2), 71-82.
Nishimoto, E., & Shiotani, M. (2013). Intraseasonal variations in the tropical tropopause temperature revealed by cluster analysis of convective activity. Journal of Geophysical Research: Atmospheres, 118(9), 3545-3556.
Nurwidyanto, I., & Setiawan, A. (2011). Inversi linier leastsquare dengan MATLAB (Studi kasus model gravitasi bola berlapis). Berkala Fisika, 14(3), 93-100.
Rahman, H. A. (2009). Global climate change and its effects on human habitat and environment in Malaysia. Malaysian Journal of Environmental Management, 10(2), 17-32.
Seidel, D. J., Sun, B., Pettey, M., & Reale, A. (2011). Global radiosonde balloon drift statistics. Journal of Geophysical Research: Atmospheres, 116(D07102), 1-8.
Windyswara, D. (2018). Alasan pemerintah Indonesia meratifikasi Paris climate agreement tahun 2016. Ejournal Ilmu Hubungan Internasional, 6(4), 1419-1440.
DOI: https://doi.org/10.17509/jem.v10i2.52549
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Mathematics Program Study, Universitas Pendidikan Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.