Comprehensive Overview of Principal Component Analysis Applications and Developments
Abstract
Principal Component Analysis (PCA) is a popular statistical method for reducing data dimensionality in complex data analysis. Developed since the early 20th century by Pearson and Hotelling, PCA has become an important tool in various disciplines. This article reviews the application of PCA in various industries to explain the working principles and key steps in this method, such as data normalization, covariance matrix calculation, eigenvalue decomposition, and data projection. The review also includes previous studies applying PCA in healthcare, remote sensing, finance, agriculture, education, and geology. The results show that PCA effectively reduces data dimensionality, improves accuracy, and identifies significant features in each application. PCA also contributes to accurate data-driven decision-making. To date, PCA remains applicable and has wide applicability in various fields, proving its effectiveness in facing the growing challenges of modern data.
Keywords: Analysis (PCA), Dimensionality Reduction, PCA Applications, PCA Methodology, PCA Timeline, Principal Component.
Abstrak
Principal Component Analysis (PCA) adalah metode statistik yang populer untuk mereduksi dimensi data dalam analisis data kompleks. Dikembangkan sejak awal abad ke-20 oleh Pearson dan Hotelling, PCA telah menjadi alat penting di berbagai disiplin ilmu. Artikel ini mengulas penerapan PCA di berbagai industri untuk menjelaskan prinsip kerja dan langkah-langkah utama dalam metode ini, seperti normalisasi data, perhitungan matriks kovarians, dekomposisi nilai eigen, dan proyeksi data. Ulasan juga mencakup studi-studi terdahulu yang menerapkan PCA di bidang kesehatan, penginderaan jauh, finansial, pertanian, pendidikan, dan geologi. Hasilnya menunjukkan bahwa PCA efektif dalam mengurangi dimensi data, meningkatkan akurasi, dan mengidentifikasi fitur signifikan pada setiap aplikasi. PCA juga berkontribusi pada pengambilan keputusan berbasis data yang akurat. Hingga saat ini, PCA tetap aplikatif dan memiliki penerapan yang luas di berbagai bidang, membuktikan efektivitasnya pada data modern yang terus berkembang.
Keywords
Full Text:
PDFReferences
AbdelFattah, M. K., Mohamed, E. S., Wagdi, E. M., Shahin, S. A., Aldosari, A. A., Lasaponara, R., & Alnaimy, M. A. (2021). Quantitative evaluation of soil quality using principal component analysis: The case study of El-Fayoum depression Egypt. Sustainability (Switzerland), 13(4), 1–19.
Alessio, M., & Cannistraci, C. V. (2016). Nonlinear Dimensionality Reduction by Minimum Curvilinearity for Unsupervised Discovery of Patterns in Multidimensional Proteomic Data (pp. 289–298).
Rubaie, M., Wu, P., Chang, J. M., & Kung, S.-Y. (2017). Privacy-preserving PCA on horizontally-partitioned data. 2017 IEEE Conference on Dependable and Secure Computing, 280–287.
Bharadiya, J. P. (2023). A Tutorial on Principal Component Analysis for Dimensionality Reduction in Machine Learning. International Journal of Innovative Science and Research Technology, 8(5).
Bloemendal, A., Knowles, A., Yau, H.-T., & Yin, J. (2016). On the principal components of sample covariance matrices. Probability Theory and Related Fields, 164(1–2), 459–552.
Cardot, H., & Degras, D. (2018). Online Principal Component Analysis in High Dimension: Which Algorithm to Choose? International Statistical Review, 86(1), 29–50.
Dharmawan, A., Masithoh, R. E., & Amanah, H. Z. (2023). Development of PCA-MLP Model Based on Visible and Shortwave Near Infrared Spectroscopy for Authenticating Arabica Coffee Origins. Foods, 12(11).
Ding, L., & Miao, H. (2020). Collapsed building classification with optical and sar data based on manifold learning. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5(3), 83–88.
Dong, W., Woźniak, M., Wu, J., Li, W., & Bai, Z. (2023). Denoising Aggregation of Graph Neural Networks by Using Principal Component Analysis. IEEE Transactions on Industrial Informatics, 19(3), 2385–2394.
Erdogmus, D., Rao, Y. N., Peddaneni, H., Hegde, A., & Principe, J. C. (2004). Recursive Principal Components Analysis Using Eigenvector Matrix Perturbation. EURASIP Journal on Advances in Signal Processing, 2004(13), 263984.
Jianqing, Wang, D., Wang, K., & Zhu, Z. (2019). Distributed estimation of principal eigenspaces. The Annals of Statistics, 47(6).
Fan, Z., Sun, Y., & Wang, Z. (2021). Principal components in linear mixed models with general bulk. The Annals of Statistics, 49(3).
Gewers, F. L., Ferreira, G. R., Arruda, H. F. De, Silva, F. N., Comin, C. H., Amancio, D. R., & Costa, L. D. F. (2022). Principal Component Analysis. ACM Computing Surveys, 54(4), 1–34.
Gewers, F. L., Ferreira, G. R., De Arruda, H. F., Silva, F. N., Comin, C. H., Amancio, D. R., & Costa, L. D. F. (2021). Principal component analysis: A natural approach to data exploration. ACM Computing Surveys, 54(4), 1–33.
Halko, N., Martinsson, P.-G., Shkolnisky, Y., & Tygert, M. (2011). An Algorithm for the Principal Component Analysis of Large Data Sets. SIAM Journal on Scientific Computing, 33(5), 2580–2594.
Iqbal, N., & Kumar, P. (2022). From Data Science to Bioscience: Emerging era of bioinformatics applications, tools and challenges. Procedia Computer Science, 218(2022), 1516–1528.
Jackle, D., Fischer, F., Schreck, T., & Keim, D. A. (2016). Temporal
MDS Plots for Analysis of Multivariate Data. IEEE Transactions on Visualization and Computer Graphics, 22(1), 141–150.
Jakaitiene, A., Zilinskas, A., & Stumbriene, D. (2018). Analysis of education systems performance in European Countries by Means of PCA-DEA. Informatics in Education, 17(2), 245–263.
Kartika, R., Winahyu, K., & Saputro, V. A. (2023). Implementasi Algoritma Principal Component Analysis (PCA) dan K-Nearest Neighbor (KNN) Untuk Memprediksi Kelayakan Kredit Pengguna Smartphone Di Indonesia Pada Masa Pandemi Covid-19. Jurnal Darma Agung, 1–10.
Lever, J., Krzywinski, M., & Altman, N. (2017). Principal component analysis. Nature Methods, 14(7), 641–642.
Maadooliat, M., Huang, J. Z., & Hu, J. (2015). Integrating Data Transformation in Principal Components Analysis. Journal of Computational and Graphical Statistics, 24(1), 84–103.
Olle, D. G., Zoobo Bisse, J., & Abessolo Alo’o, G. (2024). Application and comparison of K-means and PCA based segmentation models for Alzheimer disease detection using MRI. Discover Artificial Intelligence, 4(1).
Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559–572.
Raiko, T., Ilin, A., & Karhunen, J. (2007). Principal Component Analysis for Large Scale Problems with Lots of Missing Values. In Machine Learning: ECML (pp. 691–698). Springer Berlin Heidelberg.
Ray, S., Alghamdi, A., Alshouiliy, K., & Agrawal, D. P. (2020). Selecting Features for Breast Cancer Analysis and Prediction. Proceedings of the 2020 International Conference on Advances in Computing and Communication Engineering, ICACCE 2020.
Reddy, G. T., Reddy, M. P. K., Lakshmanna, K., Kaluri, R., Rajput, D. S., Srivastava, G., & Baker, T. (2020). Analysis of Dimensionality Reduction Techniques on Big Data. IEEE Access, 8, 54776–54788.
Spiegelberg, J., & Rusz, J. (2017). Can we use PCA to detect small signals in noisy data? Ultramicroscopy, 172, 40–46.
Tsagkarakis, N., Markopoulos, P. P., Sklivanitis, G., & Pados, D. A. (2018). L1-Norm Principal-Component Analysis of Complex Data. IEEE Transactions on Signal Processing, 66(12), 3256–3267.
Weylandt, M., & Swiler, L. P. (2024). Beyond PCA: Additional Dimension Reduction Techniques to Consider in the Development of Climate Fingerprints. Journal of Climate, 37(5), 1723–1735.
Wilks, D. S. (2011). Principal Component (EOF) Analysis (pp. 519–562).
Wu, S. X., Wai, H.-T., Li, L., & Scaglione, A. (2018). A Review of Distributed Algorithms for Principal Component Analysis. Proceedings of the IEEE, 106(8), 1321–1340.
Zheng, A. Y., Chen, C., Chen, Y. Q., Zhao, B. B., & Zhao, P. D. (2023). Application of SVD combined with PCA in delineation and evaluation of ore-prospecting targets in the Gejiu tin polymetallic cluster region, SW China. Ore Geology Reviews, 160, 105571.
Zou, H., & Xue, L. (2018). A Selective Overview of Sparse Principal Component Analysis. Proceedings of the IEEE, 106(8), 1311–1320.
DOI: https://doi.org/10.17509/jem.v13i1.75863
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Mathematics Program Study, Universitas Pendidikan Indonesia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.