Pemilihan Model Regresi Linear Berganda Terbaik untuk Menentukan Faktor-Faktor Penyebab Kasus Balita Gizi Buruk di Jawa Tengah

Moch Anjas Aprihartha

Abstract


The multiple linear regression method is a statistical method that models relationship between two or more independent variables and dependent variables by entering a linear equation.  To obtain the best regression model, it is necessary to ensure that there is no multicollinearity, which is overcome by selecting a model using forward selection regression, backward elimination, and stepwise regression. The problem that can be applied with the regression method is identifying the causal factors of cases of malnutrition in toddlers in Central Java. The purpose of this study was to collect optimal variables that have a significant effect on the problem of malnutrition in toddlers in Central Java. The results of study obtained best model is backward elimination regression model. The variables that have a significant influence on the amount of malnutrition in toddlers are the number of poor people, management of drinking water and food, and number of active integrated health posts.

Keywords: Backward Elimination Regression, Forward Selection Regression, Malnutrition, Regression Model, Stepwise Regression Multiple


Abstrak

Metode regresi linear berganda adalah metode statistik yang memodelkan hubungan antara dua atau lebih variabel independen dan variabel depeden dengan memasukkan persamaan linier. Dalam menghasilkan model regresi terbaik, perlu dipastikan tidak ada multikolinearitas, yang diatasi melalui pemilihan model terbaik dengan metode regresi seleksi maju, regresi eliminasi mundur, dan metode regresi bertahap. Permasalahan yang dapat diterapkan dengan metode regresi adalah mengidentifikasi faktor penyebab terjadinya kasus gizi buruk pada balita di Jawa Tengah. Tujuan penelitian ini untuk mengumpulkan variabel optimal yang berpengaruh signifikan terhadap masalah gizi buruk balita di Jawa Tengah. Hasil penelitian diperoleh model terbaik adalah model regresi dengan eliminasi mundur. Variabel yang berpengaruh signifikan terhadap jumlah gizi buruk balita yaitu jumlah penduduk miskin, pengelolaan air minum dan makanan, dan jumlah posyandu aktif.


Keywords


gizi buruk, metode eliminasi mundur, metode seleksi maju, regresi bertahap, regresi linear berganda

Full Text:

PDF

References


Adrianto, S., Balqis, I. H. N., Soetanto, C. Z. N., & Ohyver, M. (2023). Cochrane orcutt method to overcome autocorrelation in modeling factors affecting the number of hotel visitors in Indonesia. Procedia Computer Science, 216, 630-638.

Al-Dairi, M., Pathare, P. B., Al-Yahyai, R., Al-Habsi, N., Jayasuriya, H., & Al-Attabi, Z. (2024). Machine vision system combined with multiple regression for damage and quality detection of bananas during storage. Applied Food Research, 4(2), 1-14.

Alin, A. (2010). Multicollinearity. Wiley interdisciplinary reviews: computational statistics, 2(3), 370-374.

Andana, A. P., Safitri, D., & Rusgiyono, A. (2017). Model regresi menggunakan least absolute shrinkage and selection operator (LASSO) pada data banyaknya gizi buruk kabupaten/kota di Jawa Tengah. Jurnal Gaussian, 6(1), 21-30.

Anjas, M., Sukarsa, I. K. G., & Kencana, I. P. E. N. (2019). Penerapan metode geographically weighted regression (GWR) pada kasus penyakit pneumonia di Provinsi Jawa Timur. E-Jurnal Matematika, 8(1), 27-34.

Choi, J., & Yun, J. I. (2025). Optimization of water chemistry to mitigate corrosion products in nuclear power plants using big data and multiple linear regression in machine learning. Progress in Nuclear Energy, 183, 1-8.

Cozmuta, L. M. (2025). The application of multiple linear regression methods to FTIR spectra of fingernails for predicting gender and age of human subjects. Heliyon, 11(4), 1 -13.

Đalić, I., & Terzić, S. (2021). Violation of the assumption of homoscedasticity and detection of heteroscedasticity. Decision Making: Applications in Management and Engineering, 4(1), 1-18.

Fariha, N. F., & Subekti, R. (2018). Pemilihan model regresi terbaik dalam kasus pengaruh premi, klaim, hasil investasi dan hasil underwriting terhadap laba asuransi jiwa (studi kasus PT. Asuransi Jiwasraya (persero)). Prosiding Konferensi Nasional Penelitian Matematika dan Pembelajarannya, 674-684.

Fiola, E., Yulius, F., Presilia, P., Risani, D. M., Alvionita, M., & Irawati, F. D. 2024. Metode seleksi variabel dalam pemodelan regresi linear data curah hujan Provinsi Lampung. Prosiding Seminar Nasional Sains Data, 4(1), 351-366.

Hanusz, Z., & TarasiŃska, J. (2014). Simulation study on improved Shapiro–Wilk tests for normality. Communications in Statistics-Simulation and Computation, 43(9), 2093-2105.

Lewis-Beck, M. S., & Skalaban, A. (1990). The R-squared: Some straight talk. Political Analysis, 2, 153-171.

Lu, X., Teh, S. Y., Tay, C. J., Kassim, N. F. A., Fam, P. S., & Soewono, E. (2025). Application of multiple linear regression model and long short-term memory with compartmental model to forecast dengue cases in Selangor, Malaysia based on climate variables. Infectious Disease Modelling, 10(1), 240-256.

Maulani, A., Herrhyanto, N., & Suherman, M. (2016). Aplikasi model geographically weighted regression (GWR) untuk menentukan faktor-faktor yang mempengaruhi kasus gizi buruk anak balita di Jawa Barat. Jurnal EurekaMatika, 4(1), 46-63.

O’brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41, 673-690.

Pasaribu, S. G. (2024). Analisis perbandingan model regresi linier metode forward selection, backward elimination, dan stepwise regression (studi kasus pendapatan oli mesin pada UD. Bengkel Mobil Abadi). (Doctoral dissertation, Universitas Sumatera Utara).

Pratnyaningrum, N., Yasin, H., & Hoyyi, A. (2015). Pemodelan persentase balita gizi buruk di Jawa Tengah dengan Pendekatan geographically weighted regression principal components analysis (GWRPCA). Jurnal Gaussian, 4(2), 171-180.

Shafiee, S., Lied, L. M., Burud, I., Dieseth, J. A., Alsheikh, M., & Lillemo, M. (2021). Sequential forward selection and support vector regression in comparison to LASSO regression for spring wheat yield prediction based on UAV imagery. Computers and Electronics in Agriculture, 183, 106036.

Sholihah, S. M. A., Aditiya, N. Y., Evani, E. S., & Maghfiroh, S. (2023). Konsep uji asumsi klasik pada regresi linier berganda. Jurnal Riset Akuntansi Soedirman, 2(2), 102-110.

Vu, D. H., Muttaqi, K. M., & Agalgaonkar, A. P. (2015). A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables. Applied Energy, 140, 385-394.

Wang, Q., Koval, J. J., Mills, C. A., & Lee, K. I. D. (2007).

Determination of the selection statistics and best significance level in backward stepwise logistic regression. Communications in Statistics-Simulation and Computation, 37(1), 62-72.

Wasserstein, R. L., & Lazar, N. A. (2016). The ASA statement on p-values: context, process, and purpose. The American Statistician, 70(2), 129-133.




DOI: https://doi.org/10.17509/jem.v13i1.81382

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Mathematics Program Study, Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Google Scholar Logo PNG vector in SVG, PDF, AI, CDR format