Simulasi Numerik Pengaruh Lebar dan Kerapatan Mangrove terhadap Atenuasi Gelombang di Perairan Dangkal
Abstract
This study investigates the influence of mangrove width and density on wave attenuation in shallow waters through numerical simulations using the nonlinear shallow water equations. A finite difference method with an upwind scheme was employed to discretize the nonlinear terms, resulting in a numerical model for simulating wave propagation in coastal ecosystems. The energy dissipation caused by mangroves is modeled as a friction term in the momentum equation. Numerical simulation results indicate that increasing mangrove width correlates with a decrease in wave height. In low-density vegetation, the reduction in transmitted wave height is around 1–2%, whereas high-density regions can achieve reductions of up to 21.5%. This finding suggests that sufficiently dense mangrove stands effectively dampen wave energy and protect coastal areas from erosion and damage. Additionally, an exponential fitting model was developed to explicitly account for the combined effects of mangrove density and width.
Keywords: Finite Difference Method, Mangrove, Numerical Simulation, Shallow Water Equation, Wave Attenuation.
Abstrak
Studi ini mengkaji pengaruh lebar dan kepadatan vegetasi mangrove terhadap atenuasi gelombang di perairan dangkal melalui simulasi numerik dengan menggunakan persamaan air dangkal nonlinier (nonlinear shallow water equations). Metode beda hingga dengan skema upwind diterapkan untuk mendiskretisasi suku-suku nonlinier, menghasilkan model numerik yang digunakan mensimulasikan perambatan gelombang di ekosistem pesisir. Redaman energi akibat adanya mangrove dimodelkan sebagai efek gesek pada persamaan momentum. Hasil simulasi numerik menunjukkan bahwa peningkatan lebar mangrove berkorelasi dengan penurunan tinggi gelombang. Pada vegetasi dengan kerapatan rendah pengaruh reduksi gelombang transmisi berkisar pada 1–2%, sementara untuk kawasan dengan kerapatan tinggi dapat menghasilkan reduksi hingga 21.5%. Hal ini mengindikasikan bahwa Kawasan vegetasi yang cukup rapat efektif meredam energi gelombang dan melindungi wilayah pesisir dari abrasi serta kerusakan. Selain itu, dikembangkan juga model fitting eksponensial untuk memahami pengaruh kerapatan vegetasi dan lebar mangrove secara eksplisit.
Keywords
Full Text:
PDFReferences
Akbar, A. A., Sartohadi, J., Djohan, T. S., & Ritohardoyo, S. (2017). Erosi pantai, ekosistem hutan bakau dan adaptasi masyarakat terhadap bencana kerusakan pantai di negara tropis. Jurnal Ilmu Lingkungan, 15(1), 1-10.
Bose, S. K. (2022). Turbulent two-dimensional shallow water equations and their numerical solution. Archive of Applied Mechanics, 92(11), 3405–3416.
Bryant, M., Bryant, D., Provost, L., Hurst, N., McHugh, M., Wargula, A., & Tomiczek, T. (2022). Wave attenuation of coastal mangroves at a near-prototype scale. The US Army Engineer Research and Development Center.
Dai, Z., Trettin, C. C., Mangora, M. M., & Tang, W. (2022). Soil carbon within the mangrove landscape in Rufiji River Delta, Tanzania. Wetlands, 42(7), 1-17.
Enkekes, Y. B., & Fauzi, R. (2023). Simulasi terbentuknya gelombang permukaan akibat adanya longsoran bawah laut (Metode Lax-Friedrich). Indonesian Journal of Applied Mathematics, 2(2), 40–43.
Fauzi, R., & Wiryanto, L. H. (2023, October). Numerical simulation of granular landslide using predictor-corrector method. In AIP Conference Proceedings (Vol. 2903, No. 1). AIP Publishing.
Khadafi, M. G., & Gunawan, P. H. (2019, July). Toward GPU on CUDA for Simulating Non-hydrostatic Wave Model. In 2019 7th International Conference on Information and Communication Technology (ICoICT) (pp. 1-7). IEEE.
Lopez-Arias, F., Maza, M., Calleja, F., Govaere, G., & Lara, J. L. (2024). Integrated drag coefficient formula for estimating the wave attenuation capacity of Rhizophora sp. mangrove forests. Frontiers in Marine Science, 11, 1-17.
Mulidin, M., & Sugianto, D. N. Prediksi peredaman gelombang permukaan yang menjalar melewati hutan mangrove. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 9(3), 141-152.
Mutiara, M., Faiqoh, M. H., & Fauzi, R. (2024). Numerical simulation of run-up wave using nonlinear shallow water equations with staggered grid at Canti Beach, South Lampung. Sainmatika Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam, 21(2), 161–169.
Pudjaprasetya, S. R., & Magdalena, I. (2014). Momentum conservative schemes for shallow water flows. East Asian Journal on Applied Mathematics, 4(2), 152–165.
Taofiqurohman, A. (2014). Pemodelan tinggi gelombang akibat keberadaan hutan mangrove di Desa Mayangan, Kabupaten Subang. Jurnal Akuatika, 5(1), 1-7.
Wiyanto, D. B., & Faiqoh, E. (2015). Analisis vegetasi dan struktur komunitas mangrove di Teluk Benoa, Bali. Journal of Marine and Aquatic Sciences, 1(1), 1-7.
Wilianto, M. U., & Zainab, S. Analisa dan pemetaan kepadatan hutan mangrove di wilayah pesisir Pantai Gresik. Reslaj: Religion Education Social Laa Roiba Journal, 6(11), 1-23.
Wu, F., Wu, G., & Zhang, K. (2019). A well-balanced positivity preserving central-upwind scheme for shallow water flows over uneven topography. IOP Conference Series Materials Science and Engineering, 677(3), 032083–032083.
Vitasari, M. (2015). Kerentanan ekosistem mangrove terhadap ancaman gelombang ektrim/abrasi di kawasan konservasi Pulau Dua Banten. Bioedukasi: Jurnal Pendidikan Biologi, 8(2), 33-36.
Yang, Y. (2025). An oceanic basin oscillation-driving mechanism for tides. Physics of Fluids, 37(1), 016617.
DOI: https://doi.org/10.17509/jem.v13i1.81516
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Mathematics Program Study, Universitas Pendidikan Indonesia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.