

Journal on Mathematics Education Research

Journal homepage: https://ejournal.upi.edu/index.php/JMER

Meningkatkan Kemampuan Pemahaman Konsep Matematis Siswa SMA Menggunakan Video Animasi dengan Model *Discovery Learning*

Suci Novita*, Tia Purniati, Evus Sudihartinih

Pendidikan Matematika, Universitas Pendidikan Indonesia, Bandung, Indonesia Sucinovita@gmail.com

A B S T RAK

ARTICLE INFO

Penelitian ini bertujuan untuk mendeskripsikan tahapan pengembangan video animasi menggunakan model discovery learning, mengetahui apakah terdapat peningkatan kemampuan pemahaman konsep matematis siswa setelah menggunakan video animasi dengan model discovery learning, dan mengetahui respons siswa terhadap pemanfaatan video animasi dengan model discovery learning. Metode yang digunakan dalam penelitian ini adalah Metode Research and Development (R&D) atau penelitian dan pengembangan dengan model ADDIE. Model pengembangan ADDIE memiliki lima tahapan, yaitu Analysis (Analisis), Design (perancangan), **Development** (pengembangan), Implementation (penerapan), dan Evaluation (evaluasi). Hasil penelitian menyimpulkan bahwa media video animasi yang dikembangkan menggunakan metode R&D dengan model pengembangan ADDIE. **Terdapat** peningkatan kemampuan pemahaman konsep matematis siswa berdasarkan hasil N-Gain pada kriteria sedang. Video animasi ini juga memperoleh respons yang baik dari siswa, berada pada kriteria sangat praktis untuk digunakan dalam proses pembelajaran. Sehingga video animasi ini bisa menjadi salah satu alternatif untuk pembelajaran meningkatkan kemampuan pemahaman konsep matematis siswa SMA.

Article History: Received:2024-02-22 Revision:2024-03-06 Accepted:2024-04-08 Published:2024-05-05

> Kata Kunci: video animasi discovery learning model ADDIE

ABSTRACT

This study aims to describe the stages of developing an animated video using the discovery learning model, determine whether there is an increase in students' mathematical concept understanding ability after using an animated video with a discovery learning model, and determine student responses to the use of animated videos with a discovery learning model. The method used in this research is the Research and Development

Keywords: animated video discovery learning ADDIE model (R&D) method or research and development with the ADDIE model. The ADDIE development model has five stages, namely Analysis, Design, Development, Implementation, and Evaluation. The results concluded that the animated video media developed using the R&D method with the ADDIE development model. There is an increase in students' mathematical concept understanding ability based on the N-Gain results on moderate criteria. This animated video also obtained a good response from students, being on very practical criteria to be used in the learning process. So that this animated video can be an alternative learning media to improve the ability to understand mathematical concepts of high school students

© 2023 Kantor Jurnal dan Publikasi UPI

65 | Journal on Mathematics Education Research, Volume 5 Issue 1, Mei 2024 Hal 63-82

1. PENDAHULUAN

Mata pelajaran yang tidak akan lepas dari perkembangan IPTEK salah satunya adalah

matematika (Permatasari, 2021). Matematika memiliki peranan penting dan kontribusi besar dalam

kemajuan IPTEK (Rosalina, 2023). Dalam Kurikulum Merdeka, pembelajaran matematika yang

dipakai harus dapat melatih siswa sehingga memiliki pemahaman berpikir kritis, logis, dan kreatif

yang berakibat siswa mempunyai kemampuan untuk mengembangkan dan mengolaborasikan

pengetahuannya dengan permasalahan yang muncul dalam kehidupan sehari-hari (Daimah &

Suparni, 2023). Oleh karena itu, menurut Manullang (dalam Rosalina, 2023) bahwa membuat

siswa tahu semua materi dan sekedar menyelesaikan soal bukan lagi mejadi tujuan utama dalam

pembelajaran matematika, akan tetapi bagaimana membuat siswa memahami bagaimana konsep

matematika, bagaimana keterkaitan antar konsepnya, serta bagaimana siswa mengetahui kegunaan

matematika dalam kehidupan sehari-hari.

Pentingnya siswa dalam memahami konsep ternyata belum sejalan dengan hasil penelitian

Handayani dan Aini (2019) yang menunjukkan bahwa kemampuan pemahaman konsep matematis

siswa SMA masih rendah. Imamuddin, dan Rahmat (2022) di SMAN 1 Kecamatan Mungka

mendukung hasil penelitian tersebut yang menyatakan bahwa dari 8 siswa laki-laki yang diteliti,

lima diantaranya memperoleh kriteria kemampuan pemahaman konsep matematis yang sangat

rendah dengan persentase sebesar 62% dan 3 diantara 13 siswa perempuan memperoleh kriteria

yang juga kurang. Penyebab yang peneliti peroleh adalah adanya kesulitan yang dihadapi siswa

dalam memahami konsep.

Pembelajaran matematika di sekolah jarang membuat siswa aktif dalam kelas, sebagian

besar hanya melalui pemberitahuan saja oleh guru (Kurniawan, Silalahi, Limbong, & Tambunan,

2021) karena dianggap sebagai metode yang paling efektif dan efisien (Rosalina, 2023). Nyatanya

menurut Siagian dan Sembiring (dalam Rosalina, 2023) metode repositori ini, siswa sebagai subjek

belajar kurang dilibatkan dalam menemukan sendiri konsep- konsep yang harus dikuasainya.

Menurut Novitasari (2016) matematika tidak sekedar menerima rumus dan menghafalnya saja

DOI: https://doi.org/10.17509/j-mer.v5i1.78508

Novita et al., 2024 | 66

namun siswa harus mengetahui bagaimana rumus tersebut terbentuk dan penggunaannya.

Seringnya penggunaan metode konvensional ini salah satunya dikarenakan kurangnya penggunaan

media pembelajaran yang mengakibatkan kurangnya minat siswa dalam mengikuti pembelajaran

matematika (Prasetya, Suwatra, & Mahadewi, 2021).

Pendidikan matematika memerlukan media pembelajaran yang dapat memberikan

kontribusi kelancaran komunikasi dan interaksi antara guru dan siswa sehingga aktivitas dan

kinerja pembelajaran matematika lebih optimal (Atmaja, 2020). Media pembelajaran dapat

membantu siswa menjadi lebih aktif termotivasi untuk belajar (Audie, 2019). Data yang dihimpun

Mujib, Mardiyah, Farida, Rachmadina, dan Pratiwi (2021) di bidang ini menunjukkan masih

terdapat permasalahan, artinya meskipun telah tersedia komputer dan proyektor sebagai media

pendukung, namun media pembelajaran yang tersedia di sekolah masih sedikit, khususnya media

pembelajaran berbasis teknologi. Alasannya adalah karena adanya keterbatasan waktu.

Berdasarkan hasil wawancara Putri dan Suparman (2022), media pembelajaran yang

digunakan dalam praktiknya adalah guru hanya menggunakan rekaman audio, PDF, dan

PowerPoint sederhana sebagai media pembelajaran, serta memberikan animasi yang menarik

belum dilakukan. Akibatnya siswa kehilangan semangat terhadap media pembelajaran dan kurang

aktif dalam berinteraksi dengan media pembelajaran.

Pembelajaran yang relevan dengan perkembangan saat ini memerlukan integrasi antara

teknologi, informasi, dan komunikasi (Pamungkas, Ihsanudin, Novaliyosi, & Yandari, 2018).

Menurut Rustandi dan Rismayanti (2021), guru hendaknya mampu mengembangkan keterampilan

pembuatan media pembelajaran dan mengembangkan video pembelajaran sebagai pilihan proses

pembelajaran saat ini dan masa depan.

Menurut Suryani dkk (Ilmi & Tajuddin, 2021) Video edukasi merupakan media berupa

video yang membantu siswa mencapai tujuan pembelajaran. Menurut Hasiru, Badu, dan Uno

(2021), video pembelajaran yang dirancang khusus dapat digunakan sebagai media pembelajaran

yang efektif, dan kelebihan video yang dapat dijeda dan diulang memungkinkan siswa untuk lebih

67 | Journal on Mathematics Education Research, Volume 5 Issue 1, Mei 2024 Hal 63-82

memahami pembelajarannya. Menurut Munadi, keistimewaan media pembelajaran berupa video

adalah dapat mengatasi keterbatasan jarak dan waktu, video dapat diulang jika diperlukan untuk

menambah kejelasan, serta pesan yang disampaikan menjadi cepat dan mudah diingat (Fadillah &

Bilda, 2019). Video pembelajaran juga membantu dalam memahami materi pembelajaran dan

mengulang materi di luar proses pembelajaran di sekolah (Handika, Lusiana, & Septiati, 2023),

tidak memerlukan ruangan gelap untuk bermain dan dapat dipercepat atau diperlambat (Fatmawati,

2021).

Hasil penelitian Amalric (2023) tentang pengaruh video pembelajaran matematika terhadap

jaringan kortikal otak menunjukkan bahwa perilaku positif dibuktikan dengan keakuratan perilaku

dan perubahan aktivitas otak yang ditimbulkan oleh ucapan-ucapan di area yang diajarkan terjadi

perubahan, tetapi tidak dalam bidang yang sudah atau belum diajarkan.

Menurut Mawadah dan Maryanti (dalam Sofnidar, Anggraini, & Anwar, 2023) penerapan

video animasi dengan materi yang penjelasannya mengikuti langkah-langkah model discovery

learning merupakan pilihan yang tepat dikarenakan model discovery learning adalah suatu model

pembelajaran dimana guru berperan sebagai pembimbing, sedangkan siswa sendiri yang

menemukan ilmu-ilmu yang belum diketahuinya. Hal tersebut akan membuat siswa lebih

memahami isi materi bukan sekedar menghafal saja. Didukung dengan kemajuan teknologi dan

informasi, media video saat ini dibagi menjadi beberapa jenis, salah satunya video animasi.

Menurut Sukmana (dalam Prasetya, dkk., 2021) animasi dapat diartikan menggerakan suatu benda

mati secara berurutan seolah-olah menjadi hidup.

Berdasarkan penelitian sebelumnya yang berkaitan dengan video animasi, telah ditemukan

sebuah penelitian terkait pengembangan video animasi dengan model discovery learning untuk

meningkatkan kemampuan pemahaman konsep matematis siswa SMP oleh Sofnidar dkk. (2023)

dengan hasil penelitian yang positif. Namun peneliti belum menemukan penelitian terkait

pengembangan video pembelajaran dengan model discovery learning untuk siswa SMA kelas XI

dan pengaruhnya terhadap kemampuan pemahaman matematis siswa SMA dengan materi yang

DOI: https://doi.org/10.17509/j-mer.v5i1.78508

Novita et al., 2024 | 68

diambil adalah Trigonometri. Konsep trigonometri menjadi materi prasyarat untuk materi

selanjutnya seperti dimensi tiga, limit, integral, kalkulus, dan materi-materi lainnya (Kepa, 2019).

Menurut Suendarti dan Liberna (2021) jika konsep dasar trigonometri belum dipahami secara utuh

oleh siswa, maka mereka akan mengalami kesulitan ketika menghadapi materi pelajaran yang

berhubungan dengan konsep trigonometri tersebut. Penelitian ini bertujuan untuk mendeskripsikan

tahapan pengembangan video animasi menggunakan model discovery learning, mengetahui

apakah terdapat peningkatan kemampuan pemahaman konsep matematis siswa setelah

menggunakan video animasi dengan model discovery learning dan mengetahui respons siswa

terhadap pemanfaatan video animasi dengan model discovery learning.

2. METODE

Metode yang digunakan dalam penelitian ini adalah Metode Research and Development

(R&D) atau penelitian dan pengembangan. Metode R&D menurut Sugiyono (dalam Haryati, 2012)

merupakan suatu metode yang digunakan untuk menghasilkan suatu produk melalui analisis

kebutuhan serta uji keefektifan dari produk tersebut. Desain penelitian dengan menggunakan

metode R&D mengacu pada model pengembangan tipe ADDIE guna untuk menghasilkan produk

berupa video animasi yang baik menggunakan software pembuat video animasi. Pembuatan video

animasi dalam penelitian ini menggunakan websoftware canva. Partisipan dalam penelitian ini

adalah siswa/i Sekolah Menengah Atas (SMA) kelas XI semester genap tahun ajaran 2023/2024

di salah satu SMA negeri di Kota Bandung.

Penelitian dengan menggunakan metode penelitian R&D menggunakan dua jenis data

menurut Wandari, Kamid, dan Maison (2018) yaitu data kualitatif dan data kuantitatif. Data

kualitatif, vaitu jenis data berupa informasi secara verbal dan bukan berupa angka. Data kualitatif

pada penelitian ini berupa kritik saran validator terhadap video animasi yang diujicobakan di kelas.

Data kuantitatif pada penelitian ini berupa skor validasi ahli terhadap video animasi dengan model

discovery learning, skor peningkatan kemampuan pemahaman konsep matematis siswa, dan skor

angket untuk melihat respons siswa terhadap video animasi. Instrumen dalam penelitian ini adalah

angket respons siswa, instrumen validasi ahli materi, instrumen validasi ahli media, instrumen validasi ahli praktikalitas, dan instrumen tes kemampuan pemahaman konsep matematis.

Hasil validasi yang diberikan dianalisis dengan menggunakan rumus yang diberikan oleh Azis dkk. (dalam Septia, Nurcahyono, & Balkist, 2021) sebagai berikut.

$$\underline{x} = \frac{\sum Skor\ Validator}{\sum Skor\ Maks} \times 100\%$$

Hasil persentase dari validator dikelompokkan dalam kriteria kelayakan video animasi menurut skor yang tercantum menurut Apsari & Rizki (2018) sebagai berikut.

Tabel 1. Kriteria Kelayakan Media

Rentang Skor Akhir	Kriteria
$\underline{x} > 80\%$	Sangat Layak
$60\% < \underline{x} \le 80\%$	Layak
$40\% < \underline{x} \le 60\%$	Kurang Layak
$20\% < \underline{x} \le 40\%$	Tidak Layak
$\underline{x} \le 20\%$	Sangat Tidak Layak

Hasil angket respons siswa dianalisis menggunakan rumus kepraktisan yang diberikan oleh Azis dkk. (dalam Septia dkk., 2021) sebagai berikut.

$$\underline{x} = \frac{\sum Skor\ seluruh\ murid}{\sum Skor\ maks} \times 100\%$$

Hasil persentase dari validator dikelompokkan dalam kriteria kelayakan video animasi menurut skor yang tercantum menurut Apsari & Rizki (2018) sebagai berikut.

Tabel 2. Kriteria Kepraktian Media

Rentang Skor Akhir	Kriteria
x > 80%	Sangat Praktis
$60\% < \underline{x} \le 80\%$	Praktis
$40\% < \underline{x} \le 60\%$	Kurang Praktis
$20\% < \underline{x} \le 40\%$	Tidak Praktis
<u>x</u> ≤ 20%	Sangat Tidak Praktis

Analisis data test dinilai melalui hasil pengerjaan pretest dan posttest yang mengacu kepada

pedoman penskoran kemampuan pemahaman matematis siswa. Maryana, Suaedi, dan Nurdin

(2019) dalam mengukur kemampuan pemahaman konsep matematis siswa menggunakan teknik

analisis data rata-rata nilai pretest dan posttest untuk mengetahui peningkatan sebelum dan sesudah

treatment dengan menggunakan rumus Gain ternomalisasi (Normalized Gain) menurut Hake dan

Richard (1998). Rumus analisis N-Gain menurut Septia dkk. (2021) adalah sebagai berikut.

$$N - Gain = \frac{(Y - X)}{(A - X)} \times 100\%$$

Keterangan:

A: Skor maksimal

X: Skor *pretest*

Y: Skor *posttest*

3. HASIL DAN PEMBAHASAN

Video animasi dengan model *discovery* dikembangkan menggunakan model ADDIE meliputi 5 tahapan.

1. *Analysis* (Analisis)

Tahap analisis merupakan tahap awal dalam pengembangan model ADDIE, pada tahap

ini peneliti melakukan analisis mengenai permasalahan dan kebutuhan di lapangan.

Selain itu, peneliti melakukan analisis tujuan, analisis kurikulum dan materi, serta

analisis kemampuan dan karakteristik sasaran penggunaan siswa kelas XI SMA.

Analisis dilakukan melalui observasi selama kegiatan pembelajaran matematika.

Observasi dilakukan pada saat peneliti melaksanakan Program Penguatan Profesional

Kependidikan (P3K) UPI di sekolah tempat penelitian.

2. *Design* (perancangan)

Pada tahap perancangan, analisis yang diperoleh sebelumnya dijadikan dasar untuk

merancang pengembangan media yang dibutuhkan dan disesuaikan dengan keadaan di

lapangan. Tahap ini merupakan tahap pendesainan media pembelajaran berupa video animasi dengan model *discovery learning*.

Pada tahap ini, mulai ditentukan butir-butir materi yang akan disampaikan, penyusunan naskah materi, penyusunan alur penyampaian materi dalam bentuk *flowchart*, pembuatan rancangan awal media dari segi tampilan media seperti *storyboard*, dan desain tiap *scenes*.

3. *Development* (Pengembangan)

Langkah ketiga pada tahapan ADDIE adalah tahap pengembangan (*development*), dimana pada tahap ini *storyboard* yang sebelumnya sudah dibuat mulai dibuat video animasinya.

a. Judul

Bagian ini bertujuan agar siswa dapat mengetahui apa yang akan dipelajari dan mengetahui kaitannya dengan materi yang telah dipelajari sebelumnya.

Gambar 1. Tampilan judul

b. Tujuan

Tampilan untuk tujuan pembelajaran disesuaikan dengan model yang digunakan yaitu model *discovery learning* sehingga tujuan pembelajarannya adalah menemukan suatu konsep.

Gambar 2. Tampilan tujuan

c. Manfaat Pembelajaran

Pada bagian tampilan manfaat pembelajaran ditunjukkan beberapa manfaat dari mempelajari sudut berelasi diantaranya terkait penggunaanya dalam sistem navigasi dan astronomi.

Gambar 3. Manfaat pembelajaran

d. Materi Inti

1) Stimulation

Pada langkah *stimulation* (pemberian rangsangan), siswa diberikan rangsangan terkait subtopik yang akan dipelajari. Rangsangan ini berupa cerita yang berisi masalah subtopik terkait.

Gambar 4. Tampilan Tahap Stimulation

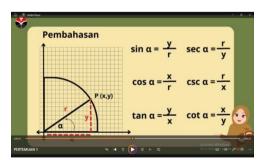
2) Problem Statement

Pada tahap tahap *problem statement* (pernyataan masalah), video animasi menampilkan perintah kepada siswa untuk menemukan masalah pada cerita

yang sebelumnya telah ditampilkan kemudian menuliskan masalah tersebut pada LKPD tahap *problem statement* yang telah diberikan sebelumnya.

Gambar 5. Tampilan Tahap *Problem Statement*

3) Data Collection Pada langkah data collection (pe


Pada langkah *data collection* (pengumpulan data), siswa diberikan kesempatan untuk mengumpulkan informasi yang relevan dan berguna untuk tahap selanjutnya yaitu *data processing* (pemrosesan data).

Gambar 6. Tampilan Tahap Data Collection

4) Data Processing

Setelah data yang diperlukan siswa dikumpulkan pada langkah *data processing*, selanjutnya data diolah untuk menemukan konsep yang diinginkan pada tahap ini.

Gambar 7. Tampilan Tahap *Data Processing*

5) Verification

Pada langkah ini, siswa diminta untuk menyelesaikan masalah awal dengan menggunakan konsep yang sesuai dengan masalah yang telah diperolehnya pada langkah *data processing*.

Gambar 8. Tampilan Tahap Verification

6) Generalization

Pada langkah *generalization*, siswa diminta untuk menyimpulkan penemuan konsep yang mereka peroleh pada langkah sebelumnya (*data processing*). Kesimpulan ini berguna agar siswa dapat mengingat dengan baik terkait konsep yang mereka temukan untuk digunakan dalam menjawab soal sudut berelasi.

Gambar 9. Tampilan Tahap Generalization

e. Latihan Soal

Video animasi dengan model *discovery learning* ini dilengkapi juga dengan latihanlatihan soal yang berkaitan dengan penggunaan konsep yang telah mereka temukan pada tahap sebelumnya.

Gambar 10. Tampilan Latihan Soal

f. Salam Penutup

Bagian akhir video animasi pada pertemuan pertama, kedua, dan ketiga sama-sama memuat salam penutup.

Gambar 11. Tampilan Salam Penutup

Setelah video animasi selesai dibuat, kemudian dilakukan penilaian oleh ahli materi, ahli media dan ahli praktikalitas untuk mengetahui kelayakan dari video animasi yang dibuat.

Tabel 3. Rata-rata Validasi Para Ahli

Ahli	Rata-rata Nilai	Kriteria
Ahli Materi	80,9%	Sangat Layak
Ahli Media	81,67%	Sangat Layak
Ahli Praktikalitas	90,58%	Sangat Layak

Berdasarkan data pada Tabel 3, diperoleh kriteria sangat layak dari ketiga validator sehingga dapat disimpulkan bahwa video animasi dengan model *discovery learning* layak digunakan.

4. *Implementation* (Implementasi)

Video animasi yang telah dinyatakan valid dan telah dilakukan revisi oleh peneliti, selanjutnya adalah tahap pengimplementasian video animasi dalam kegiatan pembelajaran di dalam kelas.

5. Evaluation (Evaluasi)

Tahap evaluasi, peneliti memberikan angket respons siswa dan posttest berupa soalsoal yang berkaitan dengan sudut berelasi, tujuannya adalah mengetahui peningkatan

Novita et al., 2024 | 76

kemampuan pemahaman konsep matematis siswanya dan mengetahui bagaimana

respons siswa setelah menggunakan pembelajaranmenggunakan video animasi dengan

model discovery learning.

Peningkatan kemampuan pemahaman konsep matematis siswa setelah menggunakan

video animasi dengan menggunakan model discovery learning dapat ditinjau

menggunakan nilai indeks Normalized Gain atau N-Gain. Penghitungan manual N-

Gain dapat dilihat pada Tabel 4.

Tabel 4. Nilai *N-Gain*

			Tabel 4	l. Nilai <i>N</i>	-Gain		
No.	Siswa	Pretest	Posttest	Post-	Score Ideal	N-	Kriteria
				Pre	(100)-Pre	Gain	
1	AIA	5	60	55	95	0,58	Sedang
2	AN	20	85	65	80	0,81	Tinggi
3	ANNP	10	15	5	90	0,06	Rendah
4	AJ	15	45	30	85	0,35	Sedang
5	DSA	15	93	78	85	0,92	Tinggi
6	DN	10	10	0	90	0,00	Rendah
7	HLR	5	80	75	95	0,79	Tinggi
8	HF	10	25	15	90	0,17	Rendah
9	IN	5	30	25	95	0,26	Rendah
10	IAH	45	60	15	55	0,27	Rendah
11	KCR	0	75	75	100	0,75	Tinggi
12	MFH	10	60	50	90	0,56	Sedang
13	MJ	0	70	70	100	0,70	Sedang
14	ML	0	88	88	100	0,88	Tinggi
15	MR	20	80	60	80	0,75	Tinggi
16	MR	5	68	63	95	0,66	Sedang
17	NI	15	83	68	85	0,80	Tinggi
18	PLF	15	25	10	85	0,12	Rendah
19	RR	45	80	35	55	0,64	Sedang
20	RSS	0	70	70	100	0,70	Sedang
21	RS	5	83	78	95	0,82	Tinggi
22	RKS	0	60	60	100	0,60	Sedang
23	RF	35	100	65	65	1,00	Tinggi
24	SA	15	60	45	85	0,53	Sedang
25	SQS	35	95	60	65	0,92	Tinggi
26	VWN	15	15	0	85	0,00	Rendah
27	WR	10	93	83	90	0,92	Tinggi
28	YL	10	15	5	90	0,06	Rendah
29	ZS	0	50	50	100	0,50	Sedang
30	ZS	5	75	70	95	0,74	Tinggi
Rat	a-rata	12,67	61,6				
			N-Gain			0,56	Sedang
	1 1	1 1	. 111 . 1	1 1	.1	-	. 20

Berdasarkan data tersebut, diketahui bahwa nilai rata-rata skor *pretest* dari 30 siswa adalah 12,67 dengan nilai tertinggi adalah 45 dan nilai terendah adalah 0 sedangkan nilai rata-rata skor *posttest* adalah 61,6 dengan nilai tertinggi adalah 100 dan nilai terendah adalah 10. Berdasarkan uji *N-Gain* diperoleh skor tertinggi adalah 1.00, dimana skor ini berada di interval *N-Gain*>0,7 sehingga skor tersebut merupakan skor dengan kriteria tinggi dan skor terendah adalah 0.00, dimana skor ini berada di interval *N-Gain*<0,3 sehingga skor tersebut berada pada kriteria rendah. Hasil keseluruhan pada uji *N-Gain* diperoleh rata— rata sebesar 0,56, dimana

skor tersebut berada pada interval 0,3≤*N*-*Gain*≤0,7 sehingga skor tersebut masuk pada kriteria sedang.

Angket respons siswa dibuat menggunakan skala likert. Hasil rekapitulasi angket respons siswa kelas XI-6 disajikan pada Tabel 5 berikut.

Tabel 5. Skor Angket Respons Siswa

No	Aspek	Persentase (%)	Kriteria
1.	Desain	88,4%	Sangat Praktis
2.	Materi	91,38%	Sangat Praktis
3.	Fungsi	90%	Sangat Praktis
	Rata-rata	89,94%	Sangat Praktis

Berdasarkan data tersebut, diperoleh nilai rata-rata 89,94% dengan kriteria sangat praktis. Dapat disimpulkan bahwa video animasi dengan model *discovery learning* sangat praktis digunakan sebagai media pembelajaran di kelas dan mendapat respons yang baik dari siswa.

Keberhasilan pembelajaran menggunakan video animasi dengan model discovery learning untuk meningkatkan kemampuan pemahaman konsep matematis telah ditunjukkan oleh Sofnidar dkk. (2023) pada jenjang SMP. Pembelajaran menggunakan video animasi dengan model discovery learning dapat meningkatkan kemampuan pemahaman konsep matematis siswa. Video animasi yang dikembangkan disusun dengan model discovery learning dimana model pembelajaran ini adalah salah satu model yang disarankan untuk digunakan di kurikulum merdeka menjadi penyebab mengapa pembelajaran menggunakan video animasi dengan model discovery learning dapat meningkatkan kemampuan pemahaman konsep matematis siswa. Model discovery learning mampu merangsang siswa untuk penasaran dan mencari tahu dalam proses penemuan konsep. Siswa tidak semata-mata diberikan rumus secara langsung tanpa mereka tahu dari mana asal rumus tersebut.

Peningkatan kemampuan pemahaman konsep matematis siswa yang berada pada kategori sedang menunjukkan bahwa penggunaan video animasi dengan model *discovery learning* tetap dapat membantu siswa dalam meningkatkan kemampuan pemahaman konsep matematis siswa

79 | *Journal on Mathematics Education Research*, Volume 5 Issue 1, Mei 2024 Hal 63-82

sesuai dengan hasil penelitian oleh Murdaningrum, Purwati, dan Safitri (2023) dan Murni,

Nurcahyono, dan Lukman (2024).

Lembar angket respons siswa ditinjau dari tiga aspek yaitu aspek desain, aspek materi, dan

aspek fungsi. Berdasarkan hasil rekapitulasi angket respons siswa untuk melihat kepraktisan video

animasi diperoleh hasil bahwa video animasi dengan model discovery learning memiliki kriteria

sangat praktis untuk digunakan dalam proses pembelajaran dimana masing-masing dari aspeknya

sama-sama memiliki kriteria sangat praktis. Ditinjau dari aspek desain, penilaian pada siswa

terhadap video animasi dilihat dari kemenarikan warna, tulisan, gambar, dan animasi, serta kalimat

yang digunakan mudah dimengerti dalam video animasi. Ditinjau dari aspek materi, penilai siswa

terhadap video animasi dilihat dari kesesuaian materi dengan tujuan pembelajaran, kesesuaian

permasalahan yang diberikan dengan kehidupan sehari- hari, terfasilitasinya siswa dalam belajar

dengan menggunakan model discovery learning, dan tersedianya soal yang

4. KESIMPULAN

Media video animasi dikembangkan dengan baik menggunakan metode R&D dengan

model pengembangan ADDIE yang terdiri dari lima tahapan yaitu Analisis, desain,

pengembangan, implementasi, dan evaluasi.Terdapat peningkatan kemampuan pemahaman

konsep matematis siswa setelah pembelajaran menggunakan video animasi dengan model

discovery learning dengan nilai rata-rata N-Gain pada kriteria sedang. Video animasi yang

dikembangkan juga memperoleh respons yang baik dari siswa dan diperoleh kriteria sangat praktis

untuk digunakan dalam proses pembelajaran.

Berdasarkan penelitian ini, saran yang dapat peneliti berikan kepada pembaca atau peneliti

selanjutnya adalah 1) Video animasi yang dikembangkan menggunakan metode R&D dengan

model pengembangan ADDIE sudah baik sehingga perlunya pengembangan video animasi pada

materi lainnya, 2) Terdapat peningkatan kemampuan pemahaman konsep matematis bervariasi

dalam video animasi. Ditinjau dari aspek fungsi, penilaian siswa terhadap video animasi dilihat

DOI: https://doi.org/10.17509/j-mer.v5i1.78508

dari bertambahnya ketertarikan untuk belajar, motivasi untuk belajar, dan pemahaman konsep siswa setelah belajar menggunakan video animasi dengan model *discovery learning*.

Kriteria sangat praktis ini sesuai dengan hasil penelitian yang dilakukan oleh Hariati, Rohanita, dan Safitri (2020) bahwa penggunaan video animasi dengan model *discovery learning* ini mampu membuat siswa mendengarkan penjelasan pembelajaran menggunakan media, siswa aktif dan tanggap dalam pembelajaran, siswa berani bertanya, dan siswa berani menyampaikan pendapat.

siswa setelah pembelajaran menggunakan video animasi dengan model *discovery learning* sehingga perlu diujikan untuk meningkatkan kemampuan matematis lainnya, dan 3) Video animasi yang dikembangkan memperoleh respons yang baik dari siswa dan diperoleh kriteria sangat praktis. Oleh karena itu, perlu diujicobakan pada partisipan yang berbeda

5. DAFTAR PUSTAKA

- Amalric, M., Roveyaz, P., & Dehaene, S. (2023). Evaluating the impact of short educational videos on the cortical networks for mathematics. *Proceedings of the National Academy of Sciences of the United States of America*, 120(6), 1-10.
- Apsari, P. N., & Rizki, S. (2018). Media pembelajaran matematika berbasis android pada materi program linear. *AKSIOMA: Jurnal Program Studi Pendidikan Matematika*, 7(1), 161-170.
- Audie, N. (2019). Peran media pembelajaran meningkatkan hasil belajar peserta didik. *Prosiding Seminar Nasional Pendidikan FKIP*, 2(1), 586–595.
- Daimah, S., & Suparni. (2023). Pembelajaran matematika pada kurikulum merdeka dalam mempersiapkan peserta didik di era society 5.0. *SEPREN: Journal of Mathematics Education and Applied*, 4(2), 131–139.
- Fadillah, A., & Bilda, W. (2019). Pengembangan video pembelajaran berbantuan aplikasi sparkoll videoscribe. *Jurnal Gantang*, *4*(2), 177–182.
- Fatmawati, N. L. (2021). Pengembangan Video animasi powtoon sebagai media pembelajaran bahasa inggris usia Sekolah Dasar di masa pandemi. *INSANI: Jurnal Pemikiran Alternatif Kependidikan*, 26(1), 65–77.
- Handayani, Y., & Aini, I. N. (2019). Analisis kemampuan pemahaman konsep matematis siswa pada materi peluang. *Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika Sesiomadika*, 2(1b), 575–581.

- Handika, W. S., Lusiana, L., & Septiati, E. (2023). Pengembangan Video Pembelajaran Materi Trigonometri Berbantuan Aplikasi Filmora. *Laplace: Jurnal Pendidikan Matematika*, 6(1), 108–121.
- Hariati, P. N. S., Rohanita, L., & Safitri, I. (2020). Pengaruh penggunaan media video animasi terhadap respon siswa dalam pembelajaran matematika pada materi operasi bilangan bulat. *Jurnal Pembelajaran dan Matematika Sigma (JPMS)*, 6(1), 18–22.
- Hasiru, D., Badu, S. Q., & Uno, H. B. (2021). Media-media pembelajaran efektif dalam membantu pembelajaran matematika jarak jauh. *Jambura Journal of Mathematics Education*, 2(2), 59–69.
- Ilmi, N., & Tajuddin, R. (2021). Pengaruh media video animasi terhadap kemampuan menulis karangan narasi siswa sekolah dasar. *SOCIETIES: Journal of Social Sciences and Humanities*, 1(1), 38–44.
- Kepa, S. (2019). Analisis pemahaman konsep dan kemampuan pemecahan masalah perbandingan trigonometri ditinjau dari gaya belajar siswa SMA Negeri 1 banda neira. Journal on Pedagogical Mathematics, 1(2), 72-85.
- Kurniawan, R., Silalahi, L. B., Limbong, C., & Tambunan, H. (2021). Analisis literasi, komunikasi dan penalaran matematika terhadap hasil belajar siswa selama pembelajaran e-learning. *Jurnal Pendidikan Matematika: Judika Education*, 4(1), 56–70.
- Maryana, M., Suaedi, S., & Nurdin, N. (2019). Pengembangan media pembelajaran matematika menggunakan powerpoint dan ispring quizmaker pada materi teorema pythagoras. *Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika*, 2(2), 53–61.
- Mujib, Mardiyah, Farida, Rachmadina, D., & Pratiwi, D. D. (2021). Developing mathematics video assisted by powtoon application in contextual learning approach. *Journal of Physics: Conference Series*, 1796(012027), 1-12.
- Murdaningrum, R., Purwati, S., & Safitri, E. N. (2023). Penerapan model pembelajaran problem based learning (pbl) berbantuan video animasi untuk meningkatkan pemahaman konsep peserta didik di kelas vii b smp negeri 10 semarang. *Proceeding Seminar Nasional IPA*. 94-102.
- Murni, A., Nurcahyono, N. A., & Lukman, H. S. (2024). Pengembangan video pembelajaran berbasis animasi terhadap kemampuan representasi matematis siswa. *Jurnal Educatio FKIP UNMA*, 10(1), 258–265.
- Novitasari, D. (2016). Pengaruh penggunaan multimedia interaktif terhadap kemampuan pemahaman konsep matematis siswa. *FIBONACCI: Jurnal Pendidikan Matematika dan Matematika*, 2(2), 8-18.

- Pamungkas, A. S., Ihsanudin, I., Novaliyosi, N., & Yandari, I. A. V. (2018). Video pembelajaran berbasis sparkol videoscribe: inovasi pada perkuliahan sejarah matematika. *Prima: Jurnal Pendidikan Matematika*, 2(2), 127–135.
- Permatasari, K. G. (2021). Problematika pembelajaran matematika di sekolah dasar/madrasah ibtidaiyah. *Jurnal Pedagogy*, *14*(2), 68-84.
- Prasetya, W. A., Suwatra, I. I. W., & Mahadewi, L. P. P. (2021). Pengembangan video animasi pembelajaran pada mata pelajaran matematika. *Jurnal Penelitian dan Pengembangan Pendidikan*, *5*(1), 60–68.
- Putri, F. A., & Suparman, S. (2022). Pengembangan video pembelajaran berbantuan powtoon dengan pendekatan kontekstual materi kekongruenan. *JKPM (Jurnal Kajian Pendidikan Matematika)*, 7(2), 359-370.
- Rosalina. (2023). Penerapan metode penemuan terbimbing untuk memahami konsep aturan sinus, kosinus, dan luas segitiga di kelas X MIA 3 SMAN 10 padang. *Journal on Education*. 6(1), 3265-3272.
- Rustandi, A., & Rismayanti. (2021). Penerapan model ADDIE dalam pengembangan media pembelajaran di SMPN 22 Kota Samarinda. *Jurnal Fasilkom*, 11(2), 57–60.
- Septia, Y. L., Nurcahyono, N. A., & Balkist, P. S. (2021). Pengembangan media baret berbasis android untuk meningkatkan kemampuan pemahaman konsep matematis siswa SMK. *Jurnal Cendekia: Jurnal Pendidikan Matematika*, 6(1), 35-47.
- Sofnidar, S., Anggraini, V., & Anwar, K. (2023). Pengembangan video animasi pada blended learning dengan model discovery untuk meningkatkan kemampuan pemahaman konsep siswa. *AKSIOMA: Jurnal Program Studi Pendidikan Matematika*, 12(4), 3670-3682.
- Suendarti, M., & Liberna, H. (2021). Analisis pemahaman konsep perbandingan trigonometri pada siswa SMA. *JNPM (Jurnal Nasional Pendidikan Matematika)*, *5*(2), 326-339.
- Wandari, A., Kamid, K., & Maison, M. (2018). Pengembangan lembar kerja peserta didik (LKPD) pada materi geometri berbasis budaya Jambi untuk meningkatkan kreativitas siswa. *Edumatika: Jurnal Riset Pendidikan Matematika*, 1(2), 47-55.