A Bibliometric Analysis of Artificial Intelligence (AI) Applications in Hydrological Modeling
Abstract
Keywords
Full Text:
PDFReferences
Aldina, S. N., & Maulana, A. (2023). Pemetaan gamifikasi pada mata kuliah hidrologi berdasarkan motivasi belajar mahasiswa pendidikan teknik bangunan. Jurnal Pendidikan Teknik Bangunan, 3(1), 21–32.
Al Husaeni, D. F., & Nandiyanto, A. B. D. (2022). Bibliometric using vosviewer with publish or perish (using google scholar data): from step-by-step processing for users to the practical examples in the analysis of digital learning articles in pre and post covid-19 pandemic. ASEAN Journal of Science and Engineering, 2(1), 19–46.
Alhajir, A. D., Dodgson, J., Lim, J., Phi, T. M., Peh, J., Pattirane, A. R. J., & Poovaragan, L. (2025). Generalising from Self-Produced Data: Model Training Beyond Human Constraints. 1–16.
Allawi, M. F., Jaafar, O., Hamzah, F. M., Abdullah, S. M. S., & El Shafie, A. (2018). Review on applications of artificial intelligence methods for dam and reservoir-hydro-environment models. Environmental Science and Pollution Research, 25, 13446–13469.
Ardabili, S., Mosavi, A., Dehghani, M., & Varkonyi-Koczy, A. R. (2019). Deep learning and machine learning in hydrological processes climate change and earth systems a systematic review. Engineering for Sustainable Future, 52–62.
Chia, M. Y., Huang, Y. F., Koo, C. H., & Fung, K. F. (2020). Recent advances in evapotranspiration estimation using artificial intelligence approaches with a focus on hybridization techniques—A review. Agronomy, 10(1), 1-33.
Chow, V. Te, Maidment, D. R., & Mays, L. W. (1988). Applied Hydrology. McGraw-Hill.
Diop, L., Samadianfard, S., Bodian, A., Yaseen, Z. M., Ghorbani, M. A., & Salimi, H. (2020). Annual rainfall forecasting using hybrid Artificial Intelligence Model: integration of multilayer perceptron with Whale Optimization Algorithm. Water Resources Management, 34, 733–746.
Fahimi, F., Yaseen, Z. M., & El-shafie, A. (2017). Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review. Theoretical and Applied Climatology, 128, 875–903.
Faruq, M. Al, & Putra, Y. H. S. (2024). Determinan keputusan membayar zakat pada BAZNAS dan LAZ: Studi Bibliometric VOSviewer dan Literature Review. Jurnal Samudra Ekonomi Dan Bisnis, 15(1), 144–161.
Ginanjar, M. R., & Yuningsih, S. M. (2018). Penerapan model kendali mutu data hidrologi dalam rangka peningkatan kualitas data. Jurnal Sumber Daya Air, 13(2), 131–146.
Guzman, S. M., Paz, J. O., Tagert, M. L. M., & Mercer, A. E. (2019). Evaluation of seasonally classified for the prediction of daily groundwater levels: NARX Networks Vs Support Vector. Environmental Modeling & Assessment, 24, 223–234.
Karbasi, M. (2018). Forecasting of multi-step ahead reference evapotranspiration using Wavelet- Gaussian process regression model. Water Resources Management, 32, 1035–1052.
Khaki, M., Yusoff, I., & Islami, N. (2014). Application of the Artificial Neural Network and Neuro-fuzzy System for assessment of groundwater quality. CLEAN Soil Air Water, 43(4), 551–560.
Kumanlioglu, A. A., & Fistikoglu, O. (2019). Performance enhancement of a Conceptual Hydrological Model by integrating Artificial Intelligence. Journal of Hydrologic Engineering, 24(11).
Ley, A., Bormann, H., & Casper, M. (2024). Linking explainable artificial intelligence and soil moisture dynamics in a machine learning streamflow model. Hydrology Research, 55(6), 613–627.
Long, J., Wang, L., Chen, D., Li, N., Zhou, J., Li, X., Guo, X., Liu, H., Chai, C., & Fan, X. (2024). Hydrological projections in the third pole using artificial intelligence and an observation-constrained cryosphere-hydrology model. Earth’s Future, 12(4), 1–20.
Mashaly, A. F., & Fernald, A. G. (2020). Identifying capabilities and potentials of system dynamics in hydrology and water resources as a promising modeling approach for water management. Water (Switzerland), 12(5), 1432.
McMillan, H. K., Westerberg, I. K., & Krueger, T. (2018). Hydrological data uncertainty and its implications. Wiley Interdisciplinary Reviews: Water, 5(6), 1–14.
Mufhidin, A., & Maksum, A. (2021). Desain road barrier untuk persimpangan jalan (studi kasus: jalan layang jakarta, bandung). Jurnal Pendidikan Teknik Bangunan, 1(2), 69–78.
Nandiyanto, A. B. D., Biddinika, M. K., & Triawan, F. (2020). How bibliographic dataset portrays decreasing number of scientific publication from Indonesia. Indonesian Journal of Science and Technology, 5(1), 154–175.
Nema, M. K., Khare, D., & Chandniha, S. K. (2017). Application of artificial intelligence to estimate the reference evapotranspiration in sub-humid Doon valley. Applied Water Science, 7(7), 3903–3910.
Oyebode, O., & Stretch, D. (2019). Neural network modeling of hydrological systems: A review of implementation techniques. Natural Resource Modeling, 32(1), 1-22.
Ramzi, K., Nadir, M., Mohamed Tewfik, B., & Hakim, D. K. (2024). Hydrological forecasts modeling using artificial intelligence and conceptual models of kébir-rhumel watershed, algeria. Ecological Engineering & Environmental Technology, 25(9), 68–80.
Sanikhani, H., Kisi, O., Maroufpoor, E., & Yaseen, Z. M. (2018). Temperature-based modeling of reference evapotranspiration using several artificial intelligence models: application of different modeling scenarios. Theoretical and Applied Climatology, 135, 449–462.
Tanty, R., & Desmukh, T. S. (2015). Application of artificial neural network in hydrology- a review. International Journal of Engineering Research and Technology, 4(6), 184-188..
van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.
Yaseen, Z. M., Allawi, M. F., Yousif, A. A., Jaafar, O., Hamzah, F. M., & El-shafie, A. (2018). Non-tuned machine learning approach for hydrological time series forecasting. Neural Computing and Applications, 30, 1479–1491.
Yaseen, Z. M., Faris, H., & Al-Ansari, N. (2020). Hybridized extreme learning machine model with salp swarm algorithm: a novel predictive model for hydrological application. Complexity, 2020(1), 10-14.
Zhu, S., & Piotrowski, A. P. (2020). River/stream water temperature forecasting using artificial intelligence models: a systematic review. Acta Geophysica, 68, 1433–1442.
DOI: https://doi.org/10.17509/jptb.v5i1.87062
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Universitas Pendidikan Indonesia (UPI)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Pendidikan Teknik Bangunan