Impact of Habit on Online Fraud Mitigation
Abstract
Keywords
Full Text:
PDFReferences
Atkins, B., & Huang, W. (2013). A study of social engineering in online frauds. Open Journal of Social Sciences, 1(03), 23.
Button, M., Nicholls, C. M., Kerr, J., & Owen, R. (2014). Online frauds: Learning from victims why they fall for these scams. Australian & New Zealand journal of criminology, 47(3), 391-408.
Chen, C. S., Su, S. A., & Hung, Y. C. (2011). Protecting Computer Users from Online Frauds U.S. Patent No. 7,958,555. Washington, DC: U.S. Patent and Trademark Office.
Chen, H., Beaudoin, C. E., & Hong, T. (2017). Securing online privacy: An empirical test on Internet scam victimization, online privacy concerns, and privacy protection behaviors. Computers in Human Behavior, 70, 291-302.
Christin, N., Yanagihara, S. S., & Kamataki, K. (2010). Dissecting one click frauds. ACM conference on Computer and communications security (pp. 15-26).
Davinson, N., & Sillence, E. (2010). It won’t happen to me: Promoting secure behavior among internet users. Computers in Human Behavior, 26(6), 1739-1747.
Forsythe, S. M., & Shi, B. (2003). Consumer patronage and risk perceptions of Internet shopping. Journal of Business Research, 56(11), 867-875.
Frantsiyants, K. (2019). Online Shopping: The Influence of the Internet on the Transformation of Consumers’ Buying Habits and Experiences (Doctoral dissertation, Empire State College).
Gupta, P., & Mundra, A. (2015). Online in-auction fraud detection using online hybrid model. In International Conference on Computing, Communication & Automation (pp. 901-907). IEEE.
Harrison, B., Vishwanath, A., & Rao, R. (2016). A user-centered approach to phishing susceptibility: The role of a suspicious personality in protecting against phishing. In 2016 49th Hawaii International Conference on System Sciences (HICSS) (pp. 5628-5634). IEEE.
Huie, S. C., Maguire, L. C., Malo, J. A., Inskeep, T. K., King, D. C., & Shroyer, D. C. (2013). Phishing redirect for consumer education: fraud detection. U.S. Patent No. 8,608,487. Washington, DC: U.S. Patent and Trademark Office.
López, A. U., Mateo, F., Navío-Marco, J., Martínez-Martínez, J. M., Gómez-Sanchís, J., Vila-Francés, J., & Serrano-López, A. J. (2019). Analysis of computer user behavior, security incidents and fraud using Self-Organizing Maps. Computers & Security, 83, 38-51.
Mahdhi, M., & Hickey, S. (2020). Six grand and a Rolex: lure of riches sucked me into online fraud. Retrieved 7 October 2020, from https://www.theguardian.com/technology/2020/feb/29/how-teenage-money-mules-funnel-millions-from-online-fraud
Maimon, D., Becker, M., Patil, S., & Katz, J. (2017). Self-protective behaviors over public WiFi networks. In The {LASER} workshop: Learning from authoritative security experiment results ({LASER} 2017) (pp. 69-76).
Maurya, A. (2012). Running Lean: Iterate from Plan A to a Plan That Works, Science of Aging Knowledge Environment. doi: 10.1126/sageke.2002.20.nw68.
Milne, G. R., Rohm, A. J., & Bahl, S. (2004). Consumers’ protection of online privacy and identity. Journal of Consumer Affairs, 38(2), 217-232.
Ortlinghaus, A., Zielke, S., & Dobbelstein, T. (2019). The impact of risk perceptions on the attitude toward multi-channel technologies. The International Review of Retail, Distribution and Consumer Research, 29(3), 262-284.
Tsang, S., Koh, Y. S., Dobbie, G., & Alam, S. (2014). Detecting online auction shilling frauds using supervised learning. Expert systems with applications, 41(6), 3027-3040.
Varghese, T. E., Fisher, J. B., Harris, S. L., & Durai, D. B. (2011). U.S. Patent No. 7,908,645. Washington, DC: U.S. Patent and Trademark Office.
Watts, S. (2016). Secure authentication is the only solution for vulnerable public wifi. Computer Fraud & Security, 2016(1), 18-20.
Yazdanifard, R., WanYusoff, W. F., Behora, A. C., & Sade, A. B. (2011). Electronic banking fraud: The need to enhance security and customer trust in online banking. Advances in Information Sciences and Service Sciences, 3(10), 505-509.
Yu, C. H., & Lin, S. J. (2013). Fuzzy rule optimization for online auction frauds detection based on genetic algorithm. Electronic Commerce Research, 13(2), 169-182.
DOI: https://doi.org/10.17509/jrak.v9i3.32182
Refbacks
- There are currently no refbacks.
Jurnal Riset Akuntansi dan Keuangan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats