
139

Searching for the Fastest Route to Tourist Attractions

with the Kruskal Algorithm in the C++ Programming

Language

Billdan Satriana Roseandree1, Amanda Jayanti Mulyana 2, Raymico Fuji3, Aldini Hegle Pratama4 dan Purnama5

1-5Software Engineering Study Program, Universitas Pendidikan Indonesia, Bandungm, Indonesia

billdansatriana@upi.edu1*), amanda1601@upi.edu2), raymico.fuji49@upi.edu3), aldini7@upi.edu4),

purnama31@upi.edu5)

A B S T R A C T A R T I C L E I N F O

In the tourism industry, finding the fastest way to various
attractions is important. In this research, efficient and
accurate algorithms facilitate the travel planning process.
One algorithm that has proven effective in solving this
problem is Kruskal's algorithm. This research aims to
implement Kruskal's algorithm in C++ programming
language to find the fastest route between tourist
destinations. This research uses the C++ programming
language to implement the Kruskal algorithm. Information
about tourist attractions and distances between tourist
destinations are presented in a graph. Kruskal's algorithm is
used to find the shortest path using the concept of MST
(minimum spanning tree). This research results in a C++
program that can use Kruskal's algorithm to find the fastest
route between tourist destinations based on the shortest
distance. The program leads to some tourist destinations that
must be visited for the fastest route. Using Kruskal's
algorithm, the program finds the fastest route between
tourist destinations, considering the shortest distance. Thus,
this research provides an efficient and accurate solution to
the problem of determining the fastest route in the tourism
industry. The resulting program can be a useful guide for
tourists when planning their trips and optimizing the time
and effort to visit various tourist attractions.

© 2021 Kantor Jurnal dan Publikasi UPI

 Article History:
Submitted/Received 00 xxx 2021
First Revised 00 xxx 2021
Accepted 00 xxx 2021
First Available online 00 xxx 2021
Publication Date 00 xxx 2021

Keyword:
C++ Programming Language;
Fastest Route;
Kruskal Algorithm;
Minimum Spanning Tree;
Tourism Industry;

Journal of Software Engineering, Information and
Communication Technology (SEICT)

Journal homepage: https://ejournal.upi.edu/index.php/SEICT

Journal of Software Engineering, Information and Communication Technology (SEICT) 4(2) (2023) 139-150

mailto:billdansatriana@upi.edu
mailto:amanda1601@upi.edu
mailto:raymico.fuji49@upi.edu
mailto:aldini7@upi.edu
mailto:purnama31@upi.edu

Amanda Jayanti Mulyana. et. el, Searching for the Fastest Route… | 140

DOI: https://doi.org/10.17509/seict.v4i2.59506

p-ISSN 2774-1656 e- ISSN 2774-1699

1. INTRODUCTION

Tourism is a sector that continues to grow in the global industry, with the emergence of
various tourist destinations that attract the attention of tourists from various corners of the
world. When traveling, one of the important things for tourists is finding the fastest route to
visit various tourist attractions.

Kruskal's algorithm is one of the algorithms used in graph theory to find a weighted graph's
minimum spanning tree (MST) [1]. This algorithm is especially useful in finding the fastest
route between tourist attractions connected via certain routes. Regarding this, the research
aims to implement the Kruskal algorithm in the C++ programming language to find the fastest
route between tourist attractions. Using the Kruskal algorithm, it is hoped that the best routes
connecting these tourist attractions can be found with minimum travel time. The C++
programming language was chosen as the main language to implement this algorithm
because C++ is a programming language commonly used in software development and
performs well. Implementing the Kruskal algorithm in the C++ programming language also
provides code development and maintenance flexibility.

This research is hoped to provide a better understanding of implementing the Kruskal
algorithm and its application in finding the fastest route. Apart from that, this research will
also include experiments and evaluation results of the performance of the Kruskal algorithm
in finding the fastest routes to tourist attractions. Thus, this research has an important
objective of increasing efficiency in tourist travel through the use of the Kruskal algorithm in
the C++ programming language.

2. METHODS
2.1. Extreme Programming (XP)

This research uses the Extreme Programming (XP) method as a reference. XP is an agile
software development method emphasizing coding activities as the main activity at each
stage of the development cycle [2] [3]. Figure 1 displays the stages contained in XP.

Figure 1. Stages in Extreme Programming (XP)

From Figure 1 above, the stages in the software development method with XP are as
follows:
1. Planning: The initial step to start research is to define the requirements needed, the results
that will be produced, the services that will be developed in the application, and the features
and functionality of the application that will be built [1].
2. Design: This step is part of planning an application that suits its use needs [1].

mailto:https://doi.org/10.17509/seict.v4i2.59506

141 | Journal of Software Engineering, Information and Communication Technology (SEICT), Volume 4

Issue 2, December 2023 Hal 139-150

DOI: https://doi.org/10.17509/seict.v4i2.59506

p-ISSN 2774-1656 e- ISSN 2774-1699

3. Coding: Steps in preparing code for software that will be applied in application
development so that it can be a solution to existing problems [1].
4. Testing: Testing services or application features and functionality built as the final stage
of the testing process. At this stage, conclusions can be drawn from the tests' results [1].
2.2. XP Steps
1. Planning:

Planning involves planning the features needed to find the shortest route. The features
needed are 1) Determining the distance between locations and determining the type of
graph, 2) Representing location neighbors using a graph, 3) Running the minimum spanning
tree algorithm, and 4) Displaying MST results.
2. Design:

Design in XP is done by drawing an undirected and weighted graph, then determining its
representation using an adjacency matrix, and finally designing the Kruskal algorithm as a
problem-solving algorithm.
3. Coding

The programming language used for coding is C++ by implementing the Kruskal
Algorithm.
a. Graph

A graph is a discrete structure consisting of vertices and edges (vertices and edges) that
connect the vertices in the graph. Many types of graphs depend on whether the graph has
directed and/or weighted edges.
b. Adjacency Matrix

The adjacency matrix is one way to represent edges in a graph to express the connection
between vertices in the graph. Adjacency matrix representation becomes more effective if
there are a large number of edges in a graph compared to an adjacency list. Let G = (V, E) be
a simple graph where |V| = n. So, the order of the adjacency matrix AG is n×n with a value of
1 for the (i, j)th vertex, which is neighboring and 0 for the (i, j)th vertex, which is not
neighboring for an undirected and unweighted graph. Still, if the graph is weighted, then a
weight value will be given to the (i, j) neighboring nodes.
c. Kruskal’s Algorithm

The Kruskal algorithm is a Greedy algorithm for finding the Minimum Spanning Tree
(MST) in graphs, especially undirected and weighted graphs. The following is the pseudocode
of Kruskal's algorithm [5].

In molestie ipsum lorem. Aenean id mi arcu. Phasellus semper efficitur eros eu laoreet.
Vivamus vitae malesuada turpis. Morbi interdum orci iaculis tempor facilisis. Suspendisse
euismod commodo nulla. Nullam eget congue justo. Phasellus vestibulum quis risus ut
pharetra.

Figure 2. Kruskal’s Algorithmn

mailto:https://doi.org/10.17509/seict.v4i2.59506

Amanda Jayanti Mulyana. et. el, Searching for the Fastest Route… | 142

DOI: https://doi.org/10.17509/seict.v4i2.59506

p-ISSN 2774-1656 e- ISSN 2774-1699

d. Testing
After all the code is integrated, unit testing will be carried out on each program

functionality to ensure the program runs well [6].

3. RESULTS AND DISCUSSION
The Kruskal algorithm was implemented to find the shortest route to a location using the

C++ programming language, and MST results were found.
A. Device Information

The program was built with the help of the Visual Studio Code IDE (Integrated
Development Environment) application and the g++ compiler version 9.2.0 on a laptop with
the following specifications.
• Windows 11, 64-bit.
• AMD Ryzen 7 5700U with Radeon Graphics @ 1.80 GHz
• 8 GB DDR4 RAM.
• 512 GB SSD.
B. Application of the Kruskal Algorithm

The Kruskal algorithm is generally applied to undirected and weighted graphs. In this case
study, 40 locations are depicted vertically, and edges depict paths connecting between
locations with weights stating the distance between locations in meters. Tourist locations are
expressed in node form starting from the 0th index.

Table 1. Tourist attractions nodes

Node Location of Tourist Attractions

0. UPI Kampus Cibiru

1. Nimo Highland

2. Kawah Papandayan

3. Darajat Pass

4. Pantai Pangandaran

5. Kebun Binatang Bandung

6. Museum Sribaduga

7. Kiara Artha Park

8. Taman Langit

9. Situ Patengan

10. Museum Gedung Sate

11. Grey Art Gallery

12. Kawah Putih

13. Kebun Raya Cibodas

14. Orchid Forest Cikol

15. Floating Market Lembang

16. Dago Dreampark

17. Kampung Gajah Wonderland

18. Taman Bunga Begonia

19. De Ranch Lembang

20. Curug Tilu Leuwi Opat

21. Taman Wisata Maribaya

22 Trans Studio Bandung

23. Taman Hutan Raya Juanda

mailto:https://doi.org/10.17509/seict.v4i2.59506

143 | Journal of Software Engineering, Information and Communication Technology (SEICT), Volume 4

Issue 2, December 2023 Hal 139-150

DOI: https://doi.org/10.17509/seict.v4i2.59506

p-ISSN 2774-1656 e- ISSN 2774-1699

24. Gunung Tangkuban Perahu

25. Taman Wisata Alam Ciwidey

26. Curug Dago

27. Trans Studio Mini Bandung

28. Kampung Daun Culture Gallery

29. Jendela Alam

30. Farmhouse Susu Lembang

31. Kampung Gajah Wonderland

32. Curug Cimahi

33. Taman Superhero

34. De Ranch Lembang

35. Museum Geologi Bandung

36. Kampung Cai Ranca Upas

37. Amazing Art World

38. Taman Wisata Grafika Cikole

39. Kampung Wisata Situ Cileunca

In order to be computable, graphs need to be converted into graph representations that
can be processed easily. Because the graph in this case study has many sides, the graph
representation that is suitable to use is the adjacency matrix. Below is the neighborhood
matrix.

Tabel 2. Adjacency Matrix
V 0 1 2 3 4 5 6 7 8 9

0 0 10894 25393 16573 1900 3421 29009 25389 22718 20558

1 10894 0 4548 6097 33591 15310 28157 6075 4753 24646

2 25393 4548 0 17512 19762 7617 21472 11712 17139 28982

3 16573 6097 17512 0 2655 23813 24622 3600 13423 1481

4 1900 33591 19762 2655 0 10514 19538 3510 17279 5144

5 3421 15310 7617 23813 10514 0 13292 22003 26996 24196

6 29009 28157 21472 24622 19538 13292 0 27869 17687 21222

7 25389 6075 11712 3600 3510 22003 27869 0 13529 8129

8 22718 4753 17139 13423 17279 26996 17687 13529 0 3161

9 20558 24646 28982 1481 5144 24196 21222 8129 3161 0

 10 11 12 13 14 15 16 17 18 19

10 0 31833 8164 21851 2626 23848 28611 13181 22221 16944

11 31833 0 6109 19662 10357 5675 31877 29503 23663 3865

12 8164 6109 0 14829 9526 13938 21424 4829 6706 19540

13 21851 19662 14829 0 14357 3223 33678 24775 3363 24245

14 2626 10357 9526 14357 0 23142 2752 21608 10010 26508

15 23848 5675 13938 3223 23142 0 19443 30292 23171 29318

16 28611 31877 21424 33678 2752 19443 0 6997 28489 28870

17 13181 29503 4829 24775 21608 30292 6997 0 19240 10601

18 22221 23663 6706 3363 10010 23171 28489 19240 0 29323

19 16944 3865 19540 24245 26508 29318 28870 10601 29323 0

 20 21 22 23 24 25 26 27 28 29

mailto:https://doi.org/10.17509/seict.v4i2.59506

Amanda Jayanti Mulyana. et. el, Searching for the Fastest Route… | 144

DOI: https://doi.org/10.17509/seict.v4i2.59506

p-ISSN 2774-1656 e- ISSN 2774-1699

20 0 7705 27303 10781 9380 5693 32907 27633 30560 17336

21 7705 0 15256 27504 30815 5686 25307 13158 16147 19337

22 27303 15256 0 13392 26951 31080 24481 13022 26162 2278

23 10781 27504 13392 0 7541 11116 2012 2146 2655 13393

24 9380 30815 26951 7541 0 13249 22136 19392 21675 8636

25 5693 5686 31080 11116 13249 0 27630 14037 1792 31714

26 32907 25307 24481 2012 22136 27630 0 4925 23361 29164

27 27633 13158 13022 2146 19392 14037 4925 0 32754 32591

28 30560 16147 26162 2655 21675 1792 23361 32754 0 20949

29 17336 19337 2278 13393 8636 31714 29164 32591 20949 0

 30 31 32 33 34 35 36 37 38 39

30 0 1754 23018 3111 6651 30492 26697 7582 21136 12243

31 1754 0 15776 24650 3258 13433 31877 29503 23663 3865

32 23018 15776 0 29149 8213 24840 18780 12159 10198 8514

33 3111 24650 29149 0 10860 7766 23578 21418 28032 11168

34 6651 3258 8213 10860 0 2735 13931 27489 15387 6055

35 30492 13433 24840 7766 2735 0 33544 1159 33584 12191

36 26697 5919 18780 23578 13931 33544 0 4449 8240 6973

37 7582 29503 12159 21418 27489 1159 4449 0 4517 9922

38 21136 23663 10198 28032 15387 33584 8240 4517 0 7748

39 12243 3865 8514 11168 6055 12191 6973 9922 7748 0

After the graph is represented in a matrix as in Table 2, the Kruskal algorithm is run with
the steps starting from sorting the edges from smallest to largest (ascending), then starting
from the edges with the smallest weight that do not form a cycle/circuit are put into MST.
C. Source Code

The program code begins by creating Side and Graph structs. The graph representation
uses an adjacency matrix with a two-dimensional vector array. Then, the graph will be
initialized with 40 vertices or nodes representing the number of locations. After that, the sides
will be added randomly as dummy data, then the MST will be searched using the Kruskal
algorithm and the results will be displayed.

mailto:https://doi.org/10.17509/seict.v4i2.59506

145 | Journal of Software Engineering, Information and Communication Technology (SEICT), Volume 4

Issue 2, December 2023 Hal 139-150

DOI: https://doi.org/10.17509/seict.v4i2.59506

p-ISSN 2774-1656 e- ISSN 2774-1699

mailto:https://doi.org/10.17509/seict.v4i2.59506

Amanda Jayanti Mulyana. et. el, Searching for the Fastest Route… | 146

DOI: https://doi.org/10.17509/seict.v4i2.59506

p-ISSN 2774-1656 e- ISSN 2774-1699

Figure 5. main() Function

Based on Figure 3, the graph is initialized in the createGraf() function to create an instance
of a graph object with the number of vertices as a parameter, and there is also an addEdge()
function to add edges to the graph. Then, the Kruskal Algorithm in Figure 4 is implemented
with the kruskalMST() function, which returns a queue to store MST edges. Then, in the main()
function in Figure 5, all sides are filled with dummy data or distances between artificial
locations, and the implementation results are displayed.
D. Output
The r esulting output is as follows.

mailto:https://doi.org/10.17509/seict.v4i2.59506

147 | Journal of Software Engineering, Information and Communication Technology (SEICT), Volume 4

Issue 2, December 2023 Hal 139-150

DOI: https://doi.org/10.17509/seict.v4i2.59506

p-ISSN 2774-1656 e- ISSN 2774-1699

Figure 6. Output matriks ketetanggaan

mailto:https://doi.org/10.17509/seict.v4i2.59506

Amanda Jayanti Mulyana. et. el, Searching for the Fastest Route… | 148

DOI: https://doi.org/10.17509/seict.v4i2.59506

p-ISSN 2774-1656 e- ISSN 2774-1699

Figure 7. MST Output

Figure 6 displays the adjacency matrix where the rows represent the origin node, and the
columns represent the destination node. Then, in Figure 7, the MST results show 72,385
meters for the total cost of travel connecting all tourist locations.

Table 3. Kruskal Algorithm Steps
LANGKAH EDGE BOBOT

I J

0

1 1 25 1028

2 2 24 1058

3 23 37 1073

4 35 37 1159

5 18 36 1189

6 17 28 1229

7 9 11 1235

8 1 39 1241

9 3 16 1300

10 13 29 1330

11 5 17 1335

12 18 31 1474

13 0 29 1475

14 3 9 1058

15 9 18 1481

16 1 28 1540

17 6 20 1608

18 16 28 1658

19 13 20 1690

20 11 34 1702

21 18 20 1748

22 30 31 1754

23 0 4 1900

24 7 15 1911

25 14 30 1943

26 9 32 1958

27 23 26 2012

33 7 37 2560

34 10 14 2626

mailto:https://doi.org/10.17509/seict.v4i2.59506

149 | Journal of Software Engineering, Information and Communication Technology (SEICT), Volume 4

Issue 2, December 2023 Hal 139-150

DOI: https://doi.org/10.17509/seict.v4i2.59506

p-ISSN 2774-1656 e- ISSN 2774-1699

28 8 27 2052

29 8 25 2071

30 23 27 2146

31 22 29 2278

32 24 35 2386

35 5 19 2769

36 1 12 2926

37 30 33 3111

38 21 34 3327

39 29 38 3599

Figure 8. MST Graph

4. CONCLUSION

This research aims to find the fastest route between certain tourist attractions using the
Kruskal algorithm in the C++ programming language. Kruskal's algorithm is one of the fastest
route-finding algorithms popular in graph processing. This method focuses on finding the
shortest path that involves the minimum path from one tourist spot to another. Dummy data
is used in this study to simulate tourist attractions and the distance between them. The
Kruskal algorithm is then applied to the dummy data to find the fastest route. In the C++
programming language, the Kruskal algorithm is implemented using data structures such as
graphs or matrices. Using C++ provides flexibility and efficiency in data processing and
algorithm use. This research is important to help tourists or travelers efficiently plan their
trips. By finding the fastest routes between tourist attractions, the time and effort required
to travel can be reduced.

However, remember that these conclusions are based on the use of dummy data and do
not include actual results from actual research. Further research and testing with real data is
needed to confirm the effectiveness of Kruskal's algorithm in finding the fastest route
between tourist attractions.

5. REFERENCES

[1] Yasin, M., & Afandi, B. (2014). Simulasi Minimum Spanning Tree Graf Berbobot

Menggunakan Algoritma Prim dan Algoritma Kruskal. Jurnal Educazione: Jurnal

Pendidikan, Pembelajaran dan Bimbingan dan konseling, 2(2).

[2] Borman, R. I., Priandika, A. T., & Edison, A. R. (2020). Implementasi Metode

Pengembangan Sistem Extreme Programming (XP) pada Aplikasi Investasi Peternakan.

JUSTIN (Jurnal Sistem Dan Teknologi Informasi), 8(3), 272-277.

mailto:https://doi.org/10.17509/seict.v4i2.59506

Amanda Jayanti Mulyana. et. el, Searching for the Fastest Route… | 150

DOI: https://doi.org/10.17509/seict.v4i2.59506

p-ISSN 2774-1656 e- ISSN 2774-1699

[3] Suryantara, I. G. N., Kom, S., & Kom, M. (2017). Merancang Applikasi dengan

Metodologi Extreme Programming. Elex Media Komputindo.

[4] K. Rosen, Discrete Maths and Its Applications Global Edition 7e. McGraw Hill, 2012.

[5] R. S. Pressman, Software Engineering: A Practitioner’s Approach. McGraw-Hill

Education, 2010.

mailto:https://doi.org/10.17509/seict.v4i2.59506

	C. Source Code
	D. Output

