
113

Comparison Towards Different Methods of

Software Debugging

Akwan Cakra Tajimalela1, Ramandha Putra Suryahadi2, Rizka Alfadilla3, Indira Syawanodya4, Iqbal Tawakal5

1,2,3,4 Software Engineering Study Program, Universitas Pendidikan Indonesia, Indonesia

Correspondence: E-mail: akwancak20@upi.edu

A B S T R A C T A R T I C L E I N F O

To ensure that software works as expected, debugging is
essential. This article discusses several types of debugging,
focusing on Visual Studio Code Debugger, print statement
debugging, and static code analysis. Each method is
demonstrated through a simple yet comprehensive program
that determines whether a selected number is a prime
number. We conclude that the Visual Studio Code Debugger
offers powerful features but requires prior experience with
Visual Studio Code. Print statement debugging is
straightforward but can become cumbersome in more
complex programs. Static code analysis, particularly with
ESLint, does not directly uncover "bugs" in the traditional
sense but evaluates code style, security, and good
programming practices. Combining these three methods can
yield optimal results in the debugging and inspection
process, depending on the specific needs and context of the
project.

© 2021 Kantor Jurnal dan Publikasi UPI

 Article History:
Submitted/Received
04 June 2024
First Revised 06 November 2024
Accepted 12 December 2024
First Available online
12 December 2024
Publication Date
12 December 2024

Keyword:
Software,
Debugging,
Visual Studio Code,
Programming,
Coding.

Journal of Software Engineering, Information and
Communication Technology (SEICT)

Journal homepage: https://ejournal.upi.edu/index.php/SEICT

Journal of Software Engineering, Information and Communication Technology (SEICT) 5(2) (2024) 113-122

Akwan Cakra Tajimalela, et al., Comparison Towards Different Methods of… | 114

DOI: https://doi.org/10.17509/seict.v5i2.70590

p- ISSN 2774-1656 e- ISSN 2774-1699

1. INTRODUCTION

 Debugging and inspection are two crucial and inseparable components in software
development. The importance of these activities cannot be overstated, as they significantly
impact the quality and reliability of software products. Testing and debugging are essential
phases in the software development lifecycle, but they are also the most expensive and
exhausting phases (Campos, et al., 2012). Moreover, in software development, we need to
clarify where inspections are essential because the more inspections are conducted, the less
burden debugging places on testing operations, thereby increasing the efficiency and quality
of software development (Fargan, 1999). In other words, the more effective the inspections,
the less time and effort required for debugging, which significantly improves the overall
efficiency and quality of software development.

However, if there are errors or bugs that escape the inspection phase, it is expected that
these errors will be found and corrected during subsequent testing. Bugs, or errors in
software, can have very detrimental effects on quality and reliability (Wahyuningsih, 2023).
These issues can cause a range of problems, from minor glitches and performance hindrances
to severe system crashes and security vulnerabilities. Consequently, the presence of bugs can
increase maintenance costs, extend development time, and damage the reputation of the
software provider (Azhar & Rochimah, 2016). Therefore, if bugs escape inspection, efficient
debugging practices are crucial to mitigate these risks and ensure the delivery of reliable and
accurate software solutions.

The importance of debugging and inspection lies in their ability to ensure that the software
meets the required quality and reliability standards. From the outset, we need to implement
effective debugging techniques to identify and fix bugs early on, thus preventing negative
impacts on software performance and user experience (Wahid, et al., 2015). Therefore,
evaluating the effectiveness of various debugging techniques becomes an interesting
endeavor. This evaluation is important to optimize the process of identifying and fixing bugs.
Various debugging tools and strategies, such as Visual Studio Code Debugger, Print statement
debugging, and Static code analysis, each offer different advantages and challenges.

This article will present a comparative analysis of these various debugging tools and
strategies to highlight the strengths and weaknesses of each in the context of debugging. By
understanding the pros and cons of each tool and strategy, developers can make better
decisions about which tools and strategies are most appropriate for different scenarios,
ultimately enhancing debugging efficiency and improving overall software quality.

2. LITERATURE REVIEW

2.1. Debugging

Debugging is crucial for preventing software functionality issues. It is the essential process
of identifying and fixing errors or defects in a software system to ensure its proper functioning
(Strauss, 2023; Srivastva & Dhir, 2017). The goal is to ensure that the program or system
operates as expected. However, debugging is not just about fixing code; it is also about
understanding why bugs occur and finding ways to prevent them in the future. The debugging
process typically involves six steps: reproduce the conditions, find the bug, determine the root
cause, fix the bug, test to validate the fix, and document the process (IBM, 2023).

2.2. Inspection

Software inspection is a crucial process in software engineering that involves reviews by
trained peers to identify defects in work products using a specified methodology (Anderson

https://doi.org/10.17509/seict.v5i2.70590

115 | Journal of Software Engineering, Information and Communication Technology (SEICT), Volume 5

Issue 2, December 2024 Hal 113-122

DOI: https://doi.org/10.17509/seict
p-ISSN 2774-1656 | e-ISSN 2774-1699

& Teitelbaum, 2001). This inspection aims to reduce the expected costs of software failures
throughout the product lifecycle. The goal of software inspection is to embed quality into the
software product from the beginning, rather than addressing quality issues later in the
development cycle, as the cost of fixing defects increases significantly when detected later.
Various methods and tools are used in software inspections, such as analyzing output files to
ensure consistency in requirements, design, testing, and source code, generating traceability
matrices, and creating reports on inspection results (Laitenberger, 2002). Additionally,
advancements like software inspection tools for remote diagnostics and unmanned vehicle
control contribute to simplifying the maintenance and installation processes in software
inspections.

2.3. Bugs in Software

Bugs can be found in various parts of software, from source code to system design, and
can affect multiple operational aspects of the software. A bug is a system error that causes a
mismatch between user expectations and actual results (Liang & Hartanto, 2022). Bugs
typically arise from programming errors, and resolving them quickly is essential to avoid
disrupting users' business processes. Even after the software is completed, bugs are often
present (Hadiprakoso, 2020). Managing bugs in software requires a systematic and organized
approach. This process involves early detection, accurate classification, prompt resolution,
and effective prevention. The time required to fix a bug can vary depending on its complexity
(Azhar & Rochimah, 2016). By implementing best practices in software development and
rigorous testing, the number and impact of bugs can be minimized, thereby enhancing the
overall quality and reliability of the software.

2.4. Types of Bugs in Software

Bugs in software can be categorized into various types based on their characteristics and
impact on the software. Here are explanations of some commonly encountered types of bugs:

1) Functional Bug

This type of bug affects the functionality of the software (Whittaker, 2012). An example is
when a feature does not function as intended or produces incorrect output. Functional bugs
can cause failures in the software's main operations and are often a top priority for fixing.

2) Logic Bug

Logic bugs occur when there is an error in the programming logic. This means that the
software may run without technical errors, but the results do not match expectations due to
incorrect algorithm or logic decisions (Martin, 2008). Examples include calculation errors or
incorrect conditions in if-else statements.

3) Syntax Bug

Syntax bugs occur due to errors in code writing that violate the syntax rules of the
programming language used (Kernighan & Pike, 1999). Examples include writing errors in
variables, missing parentheses, or disallowed characters. These bugs are usually easy to find
and fix by the compiler or interpreter.

https://doi.org/10.17509/seict

Akwan Cakra Tajimalela, et al., Comparison Towards Different Methods of… | 116

DOI: https://doi.org/10.17509/seict.v5i2.70590

p- ISSN 2774-1656 e- ISSN 2774-1699

2.5. Debugging Tools and Strategies

Debugging has several tools and strategies to choose from. Many variations of strategy are
used in order to gain the best result with the best approach. While VSCode Debugger, IntelliJ
IDEA, and any other debugging tools are meant to help software developers in the debugging
processes. Here are some of the tools and strategies for debugging.

A. Tools

Visual Studio Code, Chrome DevTools, ReSharper, PyCharm Debugger, Xcode, Android
Studio, dbForge SQL Tools, Telerik Fiddler, Eclipse Debugging Tools, WinDbg (Windows
Debugger), intelliJ IDEA, Sauce Labs

B. Strategies

Brute force method, rubber duck debugging, bug clustering, cause elimination
method, backtracking, program slicing, binary searching, static analysis

1) Visual Studio Code Debugger

The Visual Studio Code Debugger is a built-in debugger in Visual Studio Code that provides
various debugging features such as breakpoints, step in/over/out, watch expressions, and
more. Users can use this Debugger to track the flow of the program, analyze variable values,
and detect bugs (Paul Ballard).

2) Print Statement Debugging

Print Statement Debugging is a debugging method that involves adding print statements
to the code to print variable values or specific points in the program flow. This helps
developers track the execution flow of the program and check variable values (McConnell,
2004).

3) Static Code Analysis

Static Code Analysis is a method that involves using tools or services to analyze code
statically without having to execute it. These tools check the code for common errors, code
style, and security issues (Martin, 2008).

3. METHODS
While there are numerous debugging processes, here we have selected some of the most

common methods and compared them. In this study, our aim is to comprehensively evaluate
these selected debugging methods, analyzing their effectiveness, efficiency, and practicality
in identifying and resolving software bugs. Through individual tests on each method, we aim
to assess their performance in bug identification and resolution. This comprehensive
examination seeks to uncover the strengths and weaknesses of each method, aiding informed
decision-making when selecting the most suitable debugging approach for diverse software
development scenarios.

3.1. Code to be Tested

The code used is simple enough to be understood by readers of various skill levels, yet
complex enough to encompass various debugging aspects. This code uses JavaScript as its
language and implements two functions: "isPrime" to check if a number is prime, and
"calculateAverage" to compute the average of a list of numbers. This code contains functional
and logical bugs in it, to test three different debugging methods.

https://doi.org/10.17509/seict.v5i2.70590

117 | Journal of Software Engineering, Information and Communication Technology (SEICT), Volume 5

Issue 2, December 2024 Hal 113-122

DOI: https://doi.org/10.17509/seict
p-ISSN 2774-1656 | e-ISSN 2774-1699

Figure 1. Test Code.

This code allows for demonstrating various common errors that may occur in everyday
programming, such as logic errors in loops and data type errors in mathematical operations.
It provides real examples of how debugging tools and strategies can be applied to fix these
errors. These functions can also be easily tested using Visual Studio Code Debugger, print
statements, and static code analysis, facilitating clear and structured comparisons between
the three debugging methods.

3.2. Implementation Visual Studio Code Debugger

Add breakpoints by clicking on the left side of the line numbers in the code in Visual Studio
Code. These breakpoints mark points where code execution pauses temporarily, allowing
inspection of variable values and program flow at that point. Once breakpoints are set, click
the green "Run" button in the top left corner of the debugging window or press "F5". This will
start code execution and stop at the first encountered breakpoint.

Figure 2. Visual Studio Code Debugger Test.

https://doi.org/10.17509/seict

Akwan Cakra Tajimalela, et al., Comparison Towards Different Methods of… | 118

DOI: https://doi.org/10.17509/seict.v5i2.70590

p- ISSN 2774-1656 e- ISSN 2774-1699

When execution pauses at a breakpoint, inspect variable values by hovering over the
variable or viewing the "Variables" panel in the debugging sidebar. This allows verification of
whether variable values match expectations at a particular point in execution. By using "Step
Over", "Step Into", and "Step Out", we can step through the code, observe execution flow,
and inspect variable values at each step. This helps identify where errors occur, such as
incorrect variable values or program logic.

3.3. Implementation Print Statement Debugging

Debugging using print statements is one of the simple yet effective methods for identifying
errors in code. Identify critical parts of the code that need to be checked for values or
execution flow. Add print statements at the identified points. These print statements will print
variable values or specific messages to the console during code execution.

Figure 3. Print Statement Debugging Test.

Run the code as usual. The print statements will print the specified information to the
console when execution reaches the marked points. After running the code and observing the
output from print statements, analyze the results. Note the printed variable values and
messages to check if they match expectations.

3.4. Implementation Static Code Analysis

The implementation of Static Code Analysis involves using tools or services that
automatically check program code to identify potential errors, code style violations, or
security issues. Choose the tool or service to perform static code analysis, here we use ESLint
to test JavaScript programming language. Install the static code analysis tool ESLint by running
the command npm install "eslint --save-dev". Configure the tool according to the project's
needs. This may involve creating a configuration file such as ".eslintrc.json" for ESLint.

https://doi.org/10.17509/seict.v5i2.70590

119 | Journal of Software Engineering, Information and Communication Technology (SEICT), Volume 5

Issue 2, December 2024 Hal 113-122

DOI: https://doi.org/10.17509/seict
p-ISSN 2774-1656 | e-ISSN 2774-1699

Figure 4. Static Code Analysis Test.

Use the command or script "eslint ." to analyze all files in the current directory. The code
analysis will identify potential errors, code style violations, or security issues in your code.
Once the analysis is complete, check the output or report generated by the code analysis tool.
Typically, the output will include a list of errors or warnings with brief descriptions of each
issue found. Interpret the analysis results to understand the issues found and their locations
in the code.

4. RESULTS AND DISCUSSION

As seen in Figure 5, the Visual Studio Code Debugger facilitates detailed examination of
code execution flow, aiding in the identification of logical errors and incorrect variable values.
In the "isPrime" function, it is found that the loop continues until "i = 29", causing a bug or
logical error. Figure 5 also shows that in the "calculateAverage" function, there is also an error
or bug when the total of 15 is added to '6', resulting in '156'. It is evident that a data type
change from integer to string has occurred.

Figure 5. Hasil Tes Visual Studio Code Debugger.

https://doi.org/10.17509/seict

Akwan Cakra Tajimalela, et al., Comparison Towards Different Methods of… | 120

DOI: https://doi.org/10.17509/seict.v5i2.70590

p- ISSN 2774-1656 e- ISSN 2774-1699

The debugger significantly enhances debugging efficiency by providing step-by-step
execution and real-time variable inspection. Developers can quickly navigate through the
code, identify anomalies, and fix issues rapidly, reducing the time spent fixing bugs. However,
its practicality may be influenced by the developer's familiarity with the debugging
environment. Proficient Visual Studio Code users find this method very practical, but those
less accustomed may require additional learning time.

By strategically placing print statements, developers can monitor variable values and
program flow, aiding in error detection such as incorrect variable assignments or unexpected
program behaviour. From Figure 6, we can see that the checking process stops at the divisor
29, whereas it should stop at the previous divisor. This indicates a bug in the "isPrime"
function. The bug is that the for loop should stop when it reaches a value greater than the
square root of n. Figure 6 also shows that the "calculateAverage" function also encounters a
bug with a variable whose value disrupts subsequent calculations.

Figure 6. Hasil Tes Print Statement

Although debugging with print statements is easy to implement, its efficiency can be
affected by the need for manual code modifications and re-execution to observe output.
Compared to debugging using specialized tools like Visual Studio Code Debugger, debugging
with print statements may be less efficient for complex or extensive code. Its practicality
diminishes in larger projects where extensive print statements make the code difficult to read.

Figure 7. Eksperimen Tes Static Code Analysis Test

Static code analysis using ESLint on the provided test code does not directly uncover "bugs"
in the traditional sense, as ESLint focuses on evaluating code style, security, and good
programming practices, rather than specific logic errors that can cause undesired behavior.
Static code analysis using ESLint requires more time due to the initial configuration process
required before analysis can be performed. Although the initial ESLint configuration can be
time-consuming, this investment is usually worthwhile for its long-term benefits. While ESLint
does not detect the two bugs intentionally placed in the test code, further experimentation
is conducted by creating an unused variable and changing the comparison operator.

The results, as seen in Figure 7, show that ESLint detects errors in both changes. First,
ESLint warns of an unused variable, which is just clutter. Then, ESLint warns that using "=="

https://doi.org/10.17509/seict.v5i2.70590

121 | Journal of Software Engineering, Information and Communication Technology (SEICT), Volume 5

Issue 2, December 2024 Hal 113-122

DOI: https://doi.org/10.17509/seict
p-ISSN 2774-1656 | e-ISSN 2774-1699

can lead to unexpected results because JavaScript will automatically perform type conversion
to match values. Although ESLint may not find bugs in the traditional sense in this code, its
use remains beneficial for improving code quality and consistency, as well as preventing
potential issues or vulnerabilities that may occur in the future.

Overall, the choice of debugging method should consider factors such as code complexity,
developer familiarity, and project needs. While each method has its advantages and
disadvantages, combining several approaches can provide a comprehensive debugging
strategy, maximizing effectiveness in identifying and resolving bugs in software development
projects.

5. CONCLUSION

In conclusion, debugging and inspection are integral components of the software
development lifecycle, significantly impacting the quality and reliability of software products.
The comparative analysis of various debugging tools and strategies in this study highlights the
diverse approaches available to developers for identifying and resolving software bugs. The
Visual Studio Code Debugger, Print Statement Debugging, and Static Code Analysis each
present unique advantages and challenges, making them suitable for different scenarios. The
Visual Studio Code Debugger offers a robust environment for detailed code examination,
enabling developers to trace execution flow and inspect variable states effectively. This
method is highly efficient for identifying logical errors and provides a powerful toolset for
step-by-step debugging, although it may require a learning curve for those unfamiliar with
the environment.

Print Statement Debugging, while straightforward and easy to implement, offers a more
manual approach to debugging. It is particularly useful for quickly checking variable values
and program flow but can become cumbersome in large codebases due to the need for
extensive print statements and potential cluttering of the code. Static Code Analysis,
exemplified by tools like ESLint, focuses on maintaining code quality and adherence to best
practices rather than directly identifying logic errors. While it may not catch specific bugs in
logic, it is invaluable for detecting code style issues, potential security vulnerabilities, and
maintaining overall code health. The initial configuration effort is offset by the long-term
benefits of consistent and high-quality code.

Overall, the study underscores the importance of selecting appropriate debugging
strategies based on the specific requirements of a project. A combination of these methods
can provide a comprehensive approach to debugging, leveraging the strengths of each to
enhance software development efficiency and produce reliable, high-quality software. By
understanding the strengths and weaknesses of each tool and strategy, developers can make
informed decisions, ultimately leading to more effective and efficient debugging processes.
6. AUTHORS’ NOTE

The authors state that there are no conflicts of interest related to the publication of this
article. The authors also confirm that the paper is free from plagiarism.

7. REFERENCES

Anderson, P., and Teitelbaum, T. (2001, July). Software inspection using codesurfer. In

Workshop on Inspection in Software Engineering (CAV 2001).

https://doi.org/10.17509/seict

Akwan Cakra Tajimalela, et al., Comparison Towards Different Methods of… | 122

DOI: https://doi.org/10.17509/seict.v5i2.70590

p- ISSN 2774-1656 e- ISSN 2774-1699

Azhar, N. F., and Rochimah, S. (2016). Memprediksi Waktu Memperbaiki Bug dari Laporan
Bug Menggunakan Klasifikasi Random Forest. Jurnal Sistem dan Informatika (JSI), 11(1),
156-164.

Campos, J., Riboira, A., Perez, A., and Abreu, R. (2012, September). Gzoltar: an eclipse plug-
in for testing and debugging. In Proceedings of the 27th IEEE/ACM international
conference on automated software engineering (pp. 378-381).

Fagan, M. E. (1999). Design and code inspections to reduce errors in program development.
IBM Systems Journal, 38(2.3), 258-287.

Hadiprakoso, R. B. (2020). Rekayasa Perangkat Lunak. Rbh.

Kernighan, B. W., and Pike, R. (1999). The Practice of Programming (Revised Edition). Addison-
Wesley.

Laitenberger, O. (2002). A survey of software inspection technologies. In Handbook of
Software Engineering and Knowledge Engineering: Volume II: Emerging Technologies
(pp. 517-555).

Liang, S., and Hartanto, Y. (2022). Implementasi Bug Tracking System dengan Metodologi
Scrum dan Algoritma Cosine Similarity. JURIKOM (Jurnal Riset Komputer), 9(1), 24-32.

Martin, R. C. (2008). Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall.

McConnell, S. (2004). Code Complete (2nd Edition). Microsoft Press.

Srivastva, S., and Dhir, S. (2017, April). Debugging approaches on various software processing
levels. In 2017 International conference of Electronics, Communication and Aerospace
Technology (ICECA) (Vol. 2, pp. 302-306). IEEE.

Strauss, D. (2023). Debugging Your Code. In: Getting Started with Visual Studio 2022. Apress,
Berkeley, CA.

Wahid, N. A., Sarwo, S., and Setiawan, A. W. (2015). Implementasi Dan Analisa Jaringan Saraf
Tiruan Dengan Feature Normalization Dan Principal Component Analysis Untuk Digit
Classifier. Petir, 8(1), 521808.

Wahyuningsih, S. S. (2023). Identifikasi Atribut Tingkat Lebih Tinggi untuk Prediksi Umur Bug.
Jurnal Kolaboratif Sains, 6(3), 164-180.

What Is Debugging? | IBM. (2023, August). Ibm.com.

Whittaker, J. (2012). How Google Tests Software. Addison-Wesley.

https://doi.org/10.17509/seict.v5i2.70590

