
1

An	Empirical	Analysis	of	Code	Smell	in	Eclipse	
Framework	Ecosystem	

Simon Kawuma1*, Enock Mabberi2, David Sabiiti Bamutura3, Moreen Kabarungi4,

Dickson Kalungi5, Evarist Nabaasa6

1-2Software Engineering Department, Mbarara University Science and of Technology
3,6Computer Science Department, Mbarara University Science and of Technology

4,5Information Technology Department, Mbarara University Science and of Technology
Correspondence E-mail: simon.kawuma@must.ac.ug

A B S T R A C T A R T I C L E I N F O

Eclipse Framework developers claim that public APIs are supported
whereas internal APIs are unsupported. However, there is no guarantee
that these interfaces are well-tested because several code smells are
reported by interface users. Applications that use code-smelly interfaces
risk failing if the code-smell are not fixed. Previous research revealed that
not all code smells can be resolved and fixed within a short period. Thus,
interface users have to fix the code smells themselves or abandon that
particular interface. To avoid waiting indefinitely for solutions from
interface developers or getting involved in code smell fixing, users should
use code-smell-free interfaces. However, interface users may not be
aware of the existence of code smell-free interfaces in the Eclipse
framework. In this research study, we used SonarQube tool to carry out
an empirical investigation on 28 major Eclipse releases to establish the
existence of code-smell- free interfaces. We provide a data set of 218K
and 321K code-smell-free public APIs and internal APIs classes
respectively. Also, we discovered that on average, 36.1% and 57.2% of
the total interfaces in a given Eclipse release are code smell-free public
APIs and internal APIs respectively in all the studied Eclipse releases.
Furthermore, we have discovered that the number of code smells linearly
increases as the Eclipse framework evolves. The average number of code
smell and technical Debt is 147K and 2,744 days in all the studied Eclipse
releases. Results from this study can be used by both interface providers
and users as a starting point to know tested interfaces and also estimate
efforts needed to fix code smells in Eclipse Frameworks.

© 2021 Kantor Jurnal dan Publikasi UPI

 Article History:
Submitted/Received
20 Januari 2025
First Revised 14 February 2025
Accepted 07 March 2025
First Available online
01 May 2021
Publication Date 01 June 2025

Keyword:
Code smells;
Evolution;
Internal APIs;
Public APIs;
Software quality.

Journal	of	Software	Engineering,	Information	and	
Communication	Technology	(SEICT)

Journal homepage: https://ejournal.upi.edu/index.php/SEICT

Journal	of	Software	Engineering,	Information	and	Communication	Technology	(SEICT)	6(1)	(2025)	01-12

Simon Kawuma et al.,	An	Empirical	Analysis	of	Code…		| 2

DOI: https://doi.org/10.17509/seict.v6i1.76200
p-ISSN 2774-1656 e-ISSN 2774-1699

1. INTRODUCTION

Frameworks and libraries serve as the foundation for application development (T. Tourwé
and T. Mens, 2003). This approach in application development encourages functionality reuse
(D. Konstantopoulos et al., 2009) and boosts productivity (J. Businge, 2019). This is why major
application frameworks, including Eclipse, jBPM, JDK and JUnit, frequently provide public
(stable) interfaces (APIs) to developers. In addition to public APIs, all of these frameworks
offer internal APIs. Eclipse is a popular and widely accepted application framework. Eclipse is
a vast and complex open-source software system used by thousands of application
developers. Eclipse has evolved for more than two decades, with over 28 main and 55 minor
versions. Eclipse, jBPM, and jUnit follow the convention of internal interfaces by using the
substring internal in their package names, but JDK's internal API packages begin with the
substring sun.

Framework developers encourage the use of public APIs because they are considered
stable, mature, and supported, whereas internal APIs are discouraged because they are
unstable, unsupported, immature, and subject to change or removal without notice (J.
Businge, 2019). Despite the fact that internal APIs are discouraged, they are widely used.
Businge et al. discovered that around 44% of the 512 Eclipse plug-ins employ internal APIs (J.
Businge et al., 2015). (A. Hora, 2016) found that 23.5% of 9702 Eclipse client projects stored
on GitHub relied on internal APIs. Experienced application developers stated that leveraging
internal APIs is a better option than creating their own APIs from scratch (J. Businge, A et al.,
2013).

Usage of both public APIs and internal APIs by developers is inevitable because when used,
development time is reduced and thus the application can reach its market within a shorter
period of time. Although interface providers claim that public APIs are supported, in
contrast, internal APIs are unsupported, there is no guarantee that these interfaces are
well tested because several code smells are reported by interface users (D. Johannes et al,
2019). Code smells reveal something wrong with the underlying code of the application which
can lead to the eventual failure of an application or slows its performance. They include
duplicate codes, long methods, comments, long parameter lists, unnecessary primitive
variables dead code and data clumps etc. (A. Gupta et al, 2017). These can affect the speed
of activity and may also become a detriment to an application program.

 Applications that might use code-smelly interfaces risk failing if the code smells are not
fixed. This implies that the application developer must be ready to fix the code smells
themselves. Code smell fixing can be done by the framework developers on behalf of the
user following a typical process of code smell fixing which may include refactoring the code
(A. Gupta et al, 2017), (R. S. Menshawy, 2021). Prior to refactoring, the initial process includes
identifying code fragments that violate the semantic properties or structure for instance
the complexity or coupling (U. Mansoor, 2017), then the code smell can be assigned to a
developer who does the fixing. This is followed by reviewing the fixed code to verify if the
code smell is resolved. According to Mansoor, Usman, et al, refactoring is really challenging.
According to reports, software maintainers spend at least 60% of their time comprehending
the code, and maintenance accounts for around 80% of software costs (U. Mansoor, 2017),
(E. Doğan et al., 2022). Therefore, fixing and resolving code smells is characterized by a long
period hence the interface user might wait indefinitely for a solution from the developer.

https://doi.org/10.17509/seict.v6i1.76200

3 |	Journal	of	Software	Engineering,	Information	and	Communication	Technology	(SEICT),	Volume	6	
Issue	1,	June	2025	Page	01-12	

DOI: https://doi.org/10.17509/seict.v6i1.76200
p-ISSN 2774-1656 e-ISSN 2774-1699

 Furthermore, software with code smells actually work and therefore can give an
output, but it is characterized by slowed processing (A. Tahir et al., 2018). This increases the
risk of failure as well as making the program vulnerable to bugs which in turn contributes to
poor code quality and hence increases the technical debt. This implies that interface users
are left with no choice but to fix the code smells themselves or abandon the interfaces.
Reusing source code with code smells could lead to high maintenance time and costs.
Literature provides a long list of code smell, and developers are advised to avoid code smell
when developing new and reusing existing code, as it increases the effort and cost of
identifying and refactoring code after system development (M. M. Rahman et al., 2022).
However, remembering this long list is difficult especially for new developers. As a solution to
avoid huge costs, waiting indefinitely for solutions from interface developers, or getting
involved in code smell fixing, users should use code smell-free interfaces. Unfortunately,
these users may be unaware that the Eclipse framework has code smell-free interfaces.

In addition, interface users manually search for the functionality they require in the Eclipse
Framework (J. Businge., 2013). Because Eclipse is a vast and complex software framework, it
is possible that interface users will first encounter code smelly interfaces rather than code
smell-free interfaces when looking for functionality to use in their applications. In this study,
we used SonarQube static code analyser tool to investigate 28 Eclipse Framework releases,
with the purpose of determining the presence of code smell-free interfaces as the Eclipse
framework evolves. The study's goal is to recommend the code smell-free interfaces to
application developers. We developed five research questions namely:

1) RQ1: what is the number code smells in Eclipse Frameworks?

2) RQ2: What is the Technical Debt needed to fix code smell in Eclipse Frameworks?

3) RQ3: What is the percentage of code smell-free internal interfaces in Eclipse
Framework?

4) RQ4: What is the percentage of code smell-free public interfaces in Eclipse
Framework?

5) RQ5: What is the commonest code smell in Eclipse Frameworks?

To address these research questions, we used static code analysis tools called
SonarQube (S. Kawuma and Nabaasa, 2018) to extract information about code smell. In
summary, the contributions of this work are threefold:

1) We provide a dataset of 218K and 321K code smell-free public APIs and internal APIs
classes respectively to Eclipse interface providers and users. Providers can use this dataset to
estimate the efforts needed to remove code smells. Users can look up code smell-free
interfaces they want to use when developing their applications.

2) The Eclipse interface providers claim that public APIs are good and stable interfaces
[4]. Indeed, this research study has empirically confirmed that public APIs are good since we
have discovered that over 87.3% of public APIs are code smell-free in all studied Eclipse
releases.

3) Internal APIs are discouraged by interface providers because they are often immature
and unsupported However, this research study has empirically confirmed that not all internal

https://doi.org/10.17509/seict.v6i1.76200

Simon Kawuma et al.,	An	Empirical	Analysis	of	Code…		| 4

DOI: https://doi.org/10.17509/seict.v6i1.76200
p-ISSN 2774-1656 e-ISSN 2774-1699

APIs are bad since over 91.5% of the internal APIs were code smell-free in all studied Eclipse
releases and thus users can use them when developing their applications.

The rest of the paper is organized as follows: Section 2 presents related work, whereas
Section 3 presents Research Methodology and Section 4 discusses experimental results.
Finally, Section 5 concludes the paper and suggests some areas for future research.

2. METHODS
One of the conclusions of prior studies by Businge et al. was that interface users are always

utilizing unstable interfaces, and the reason for this is because there are no alternative stable
interfaces that provide the same functionality (J. Businge et al., 2013). Indeed, Kawuma et al.
demonstrated that less than 1% of APIs provide the same or similar functionality as non-APIs
(S. Kawuma et al., 2016). In a recent study, Businge et al (J. Businge et al., 2013) used a clone
detection technique to investigate the stability of the internal interface as the Eclipse
framework evolved. They detected 327K stable internal interfaces and suggested them as
potential candidates for promotion. (Hora et al., 2016) revealed that 7% of 2,277 of internal
interfaces were promoted to public interfaces and the promotion rate was too low. (S.
Kawuma and Nabaasa, 2018) confirmed that the rate at which internal APIs are promoted to
public APIs is slow.

(L. Guerrouj et al., 2017) conducted research on 30 versions of three projects: ANT,
ArgoUML, and Hibernate, to determine the association between lexical smell and software
quality, as well as their interaction with design smells. They detected 29 smells, including 13
design smells and 16 lexical smells.

(B. Seref and Tanriover., 2016) carried out a survey on existing literature about software
code maintainability. In their survey, they discovered that all authors stated that
maintainability increases the quality of software and it is one of the most important
attributes. (Jafari et al., 2021) investigated dependency smell which concerns developers who
want to stay up to date with the latest features and fixes while ensuring backward
compatibility. They examined the commit data for a dataset of 1,146 active JavaScript
repositories, quantify and understand dependency smells and conducted a series of surveys
with practitioners who identified and quantified seven dependency smells with varying
degree of popularity. They also discovered that two or more distinct smells appear in 80
percent of JavaScript project and that dependency smell cause security threats, runtime error
and dependency breakage.

 Previous survey studies have examined the issues of code smells, including definitions,
detection methodologies, and refactoring tools (G. Lacerda et al., 2020),(M. Agnihotri et al.,
2020), and (H. M. dos Santos et al., 2019). Several research (P. Meananeatra, 2012), (D. Taibi
et al., 2017), (A. Yamashita and L. Moonen, 2013), and (D. J. Kim, 2020) examined developers'
awareness of code smells, perceptions, and motivations for deleting them. While other
studies (S. Jain and A. Saha, 2019), (B. F. Békefi et al., 2019) and (S. Vidal et al., 2019) focused
on refactoring activities and challenges. Several research (Yousef, and A. Salem, 2021), (A.
AbuHassan et al., 2021) and (A. Kaur et al., 2019) examined the methods and algorithms
utilized in detection and refactoring tools. Furthermore, (M. Tufano et al., 2015) studied the
evolution of code smells in 200 open-source Java systems namely; Android, Apache, and
Eclipse ecosystems and discovered that code smells are introduced in the code by both new
and experienced engineers at the start of the project. Whereas (D. Johannes et al., 2019)
examined the effect of code smells on the fault-proneness of JavaScript server-side projects.
Although some of the above studies look at public APIs and internal interface by identifying
and recommending internal Interface for promotion, whereas other studies look at code smell

https://doi.org/10.17509/seict.v6i1.76200

5 |	Journal	of	Software	Engineering,	Information	and	Communication	Technology	(SEICT),	Volume	6	
Issue	1,	June	2025	Page	01-12	

DOI: https://doi.org/10.17509/seict.v6i1.76200
p-ISSN 2774-1656 e-ISSN 2774-1699

definition, detection tools, evolution, fault-proneness, management, none of the above
authors studied code smell composition, distribution, remediation efforts (Technical Debt) to
fix them and also existence of code smell-free interfaces in Eclipse Framework as compared
to our study. This section describes the experimental setup used to collect data for the study
questions.

3.1 Eclipse Releases Collection

Table 1. Eclipse major releases and their corresponding release dates

Major Release Java Java

Releases Date LOC Classes

Major Release Java Java.

Release Date LOC Classes
E-1.0 07-Nov-01 449K 4,608

E-2.0 27-Jun-02 769K 6,751

E-2.1 27-Mar-03 959K 7,911

E-3.0 25-Jun-04 1.3M 10,634

E-3.1 27-Jun-05 1.6M 12,299

E-3.2 29-Jun-06 2M 14,941

E-3.3 25-Jun-07 2.1M 16,036

E-3.4 17-Jun-08 2.5M 18,800

E-3.5 11-Jun-09 2.6M 19,169

E-3.6 08-Jun-10 2.7M 20,922

E-3.7 13-Jun-11 2.75M 21,104

E-3.8 27-Jun-12 2.8M 22,477

E-4.0 27-Jul-10 2.6M 20,498

E-4.1 20-Jun-11 2.7M 21,234

E-4.2 27-Jun-12 2.8M 22,443

E-4.3 05-Jun-13 2.9M 22,798

E-4.4 06-Jun-14 3.1M 23,880

E-4.5 03-Jun-15 3.14M 23,920

E-4.6 06-Jun-16 3.2M 23,936

E-4.7 28-Jun-17 3.3M 25900

E-4.8 27-Jun-18 3.39M 26,180

E-4.9 19-Sept-18 3.4M 26,363

E-4.11 Mar-19 3.5M 27,448

E-4.12 Jun-19 3.51M 27,784

E-4.13 Sept-19 3.52M 27,904

E-4.14 Dec-19 3.53M 27,976

E-4.15 Mar-20 3.55M 28,500

E-4.16 Jun-20 3.6M 28,135

 This section explains the data sources for our investigation. Our investigation was based
on 28 Eclipse SDK major releases from the Eclipse project Archive website. Table 1 below
present the different Eclipse major releases we considered in this research. The first column
shows the major releases while the second column shows their corresponding release date.
The third column shows the java Lines of code (LOC) in each major Eclipse release while the
fourth column shows the total number of java classes in a given Eclipse major release. This
research study chose Eclipse as a topic of study because it is a widely used and embraced
open-source framework that will continue to draw new developers. The Eclipse framework is
constantly changing, with a new version being released every three months. This provides an
opportunity to examine code smell evolutionary tendencies as the framework evolves. This
study focused on Eclipse major versions because, as the framework evolves from one major
version to the next, new projects, sub-projects, packages, classes, interfaces, fields, and
methods are either introduced, updated, or removed.

3.2 Code smell Collection and Extraction Using SonarQube Tool.

 In this section, we present how we extracted data for research questions RQ1-RQ5. We
used the SonarQube tool (version 8.2) to extract information about code smells in the
different Eclipse releases. We relied on this tool because it is broadly used by thousands of
users in academic research settings (A. Sillitti, and D. Taibi, 2017), (V. Lenarduzzi et al., 2017)
and in industry (C. Vassallo et al., 2020), (L. Lavazza et al., 2020). We configured and ran
SonarQube on a local computer. We used the 432 maintainability rules that cover code smell
detection in SonarQube. When any of the rules are violated, then that particular source code

https://doi.org/10.17509/seict.v6i1.76200

Simon Kawuma et al.,	An	Empirical	Analysis	of	Code…		| 6

DOI: https://doi.org/10.17509/seict.v6i1.76200
p-ISSN 2774-1656 e-ISSN 2774-1699

manifests as a code smells. We investigated the total number of code smells, the code smell
remediation effort to fix all code smells and also collected information about the most
dominant code smell type i.e. the most violated rule for every Eclipse major release. In
addition to code smell detection, SonarQube estimates the code smell remediation effort
in days and an 8-hour day is assumed.

 Figure 1 illustrates the procedure we followed to detect and extract code smell
information in all the analyzed Eclipse releases. SonarQube takes source directories
containing Java files as input to detect possible code smells at specific points in the class. Then
it produces output reports for each Eclipse release which can be accessed on the SonarQube
server via the following URL http://localhost:9000. A Sample output reports for Eclipse-4.16
obtained from SonarQube is shown in figure 1 below. For SonarQube, each file in the report
has a Maintainability Rating (MR) assigned by SonarQube depending on the nature and
number of code smells found in the class of source files under investigation. For example,
from figure 1, the last rows has file with MR of A i.e. it has no code smell. The tool counts the
number of code smells reported in each release and the Technical Debt as shown in the
report.

Figure 1. SonarQube Code Smell Detection Tool

3.3 Data extraction for Number of code smell and Technical Debt in Eclipse Releases

In this section, we present the procedure we used to extract data for research questions RQ1:
what is the number code smells in Eclipse Frameworks? and RQ2: What is the Technical Debt
needed to fix code smell in Eclipse Frameworks? Information about the code smells and
technical debt i.e. time needs to fixed them was extracted from the SonarQube reports. The
total number of smell code and Technical Debt is provided in reports as illustrated in figure 1.
For example, from figure 1,1K code smells were detected and 11 days of technical debt were
needed to fix the identified code smells.

3.4 Data extraction for code smell- Free Interfaces and in Eclipse Releases

 We used SonarQube tool to extract information about code smell-free in each Eclipse
release to address RQ3: What is the percentage of code smell-free internal interfaces in
Eclipse Framework? and RQ4: What is the percentage of code smell-free public interfaces
in Eclipse Framework? We considered interfaces that have a maintainability rating of A as
illustrated in the output report figure 1. To determine the percentage of code smell-free

https://doi.org/10.17509/seict.v6i1.76200

7 |	Journal	of	Software	Engineering,	Information	and	Communication	Technology	(SEICT),	Volume	6	
Issue	1,	June	2025	Page	01-12	

DOI: https://doi.org/10.17509/seict.v6i1.76200
p-ISSN 2774-1656 e-ISSN 2774-1699

public interfaces and internal interface in a given Eclipse release, we counted both the
number of classes with and without a substring internal in their file path for internal interface
and public interfaces respectfully. We used equation 1 and 2 to calculate percentage of
internal and public code smell-free interfaces respectfully by looking at public APIs and
internal APIs individually in a given Eclipse release as shown below;

𝐶𝑜𝑑𝑒	𝑠𝑚𝑒𝑙𝑙	𝑓𝑟𝑒𝑒	𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = !"#$%&	()*+%&*,-		.*+%&),/%	01+2	3,1*+,1*,$1-+4	&,+1*5	6	
7(+,-	*"#$%&	()	1*+%&*,-	1*+%&),/%	1*	+2%	8/-19:%	&%-%,:%:

∗ 100% (1)

𝐶𝑜𝑑𝑒	𝑠𝑚𝑒𝑙𝑙	𝑓𝑟𝑒𝑒	𝑝𝑢𝑏𝑙𝑖𝑐	𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = !"#$%&	()	9"$-1/	.*+%&),/%	01+2	3,1*+,1*,$1-+4	&,+1*5	6	
7(+,-	*"#$%&	()	9"$-1/	1*+%&),/%	1*	+2%	8/-19:%	&%-%,:%:

∗ 100% (2)

 To determine the percentage of code smell free public APIs and interfaces APIs as a
combination in a given Eclipse release, code smell free public APIs and internal APIs were each
counted separately in each release and then the total number of both public and internal APIs
in a given release was calculated. To get the percentage comparison of code smell free public
and internal APIs, we used equations 3 and 4 respectively as shown below;

𝐶𝑜𝑑𝑒	𝑠𝑚𝑒𝑙𝑙	𝑓𝑟𝑒𝑒	𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = !"#$%&	()*+%&*,-		.*+%&),/%	01+2	3,1*+,1*,$1-+4	&,+1*5	6	
7(+,-		*"#$%&	()	1*+%&),/%:	1*	+2%	8/-19:%	&%-%,:%:

∗ 100% (3)

𝐶𝑜𝑑𝑒	𝑠𝑚𝑒𝑙𝑙	𝑓𝑟𝑒𝑒	𝑝𝑢𝑏𝑙𝑖𝑐	𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = !"#$%&	()	9"$-1/	.*+%&),/%	01+2	3,1*+,1*,$1-+4	&,+1*5	6	
7(+,-		*"#$%&	()	1*+%&),/%:	1*	+2%	8/-19:%	&%-%,:%:

∗ 100% (4)

3.5 Data extraction for commonest code smell in Eclipse Releases

 To address research question RQ5: What is the commonest code smell in Eclipse
Frameworks? We used the SonarQube tool to extract information about code smell
maintainability rules in the different Eclipse releases. SonarQube has 432 maintainability rules
that are uses to detect code smells and if any of the rules is violated, that particular source
code manifests as a code smell. The tool list the violated rule together with the code smell
which violated it. To establish the commonest code smell, we count the frequency the
maintainability rule is violated.
3. RESULTS AND DISCUSSION
3.1 Number of code smells and Technical Debt in Eclipse Releases

Figure 2. Number of Code smells and Technical Debt in Eclipse Releases

https://doi.org/10.17509/seict.v6i1.76200

Simon Kawuma et al.,	An	Empirical	Analysis	of	Code…		| 8

DOI: https://doi.org/10.17509/seict.v6i1.76200
p-ISSN 2774-1656 e-ISSN 2774-1699

Figure 2 presents the total number of code smells together with the Technical Debt
need to fix them in all the different Eclipse releases. In Figure 2 the bar graphs represent the
total number of code smells while the line graph represents the Technical Debt i.e. the
remediation effort needed to fix the code smells in Eclipse releases. Focusing on both the bar
graphs and line graphs, we see a linear increase in the number of code smells and Technical
Debt. Furthermore, there is a decline in the code smells and Technical Debt between Eclipse-
3.8 and Eclipse-4.0 and thereafter a linear increase is observed after Eclipse-4.0. The slight
change between Eclipse-3.8 and Eclipse-4.0 can be attributed to the fact that some classes
were deleted from Eclipse-3.8 as observed from Table 1 thus more code smells were deleted
which further led to less Technical Debt to fix the code smells. From figure 2 we observe that
the minimum and maximum number of code smell detected is between 31,199 to 186,590
across the studied Eclipse releases. Whereas the minimum and maximum efforts need to fix
the identified code smells ranges between 545 to 3,391 days in all analyzed Eclipse releases.
The average number of code smell and technical Debt is 147,277 and 2,744 days in all the
studied Eclipse releases.

4.2 Percentage of code smell-Free Interfaces in Eclipse Releases

Figure 3. Code Smell-free Public APIs and Internal APIs Categories.

Figure 4. Code Smell-free Interfaces in Eclipse Releases.

https://doi.org/10.17509/seict.v6i1.76200

9 |	Journal	of	Software	Engineering,	Information	and	Communication	Technology	(SEICT),	Volume	6	
Issue	1,	June	2025	Page	01-12	

DOI: https://doi.org/10.17509/seict.v6i1.76200
p-ISSN 2774-1656 e-ISSN 2774-1699

Figures 3 and 4 present results corresponding to the percentage of code smell-free
interfaces in different Eclipse major releases. Focusing on figure 3, for each Eclipse release,
the first and second bars present the percentage of code smell-free classes which are public
APIs and internal APIs respectively. In the same figure, we observe that there exist over 87.3%
and 91.5% code smell-free public APIs and internal APIs respectively. In figure 4, the bar graph
presents code smell-free public APIs and internal APIs as a percentage of the total number of
interfaces in each Eclipse release while the line graph presents the percentage of the total
number of code smell-free interfaces (i.e. both public APIS and internal APIS) with respect to
the total number of interfaces in a given release.

From Figure 4 and specifically focusing on bar graph, we see that majority of code smell-
free classes are internal APIs compared to public APIs. This is because internal APIs are twice
as much as the public APIS during the evolution of Eclipse (S. Kawuma et al., 2016). The
percentage of code smell-free public APIs ranges from 24.9%-46.9% whereas that of internal
interfaces is between 47.4%-68.2% of the total interfaces respectively in all the analyzed
Eclipse releases. On average, 36.1% and 57.2% of the total interfaces in a given Eclipse release
are code smell-free public APIS and internal APIs respectively. Focusing on the line graph in
figure 4, we observe that over 89.6% of the total number of classes in a given Eclipse release
are code smell-free. This higher percentage from both may imply that Eclipse interfaces are
generally tested for code smell. Furthermore, since internal APIs are considered to be
immature, and unsupported (J. Businge et al., 2019) during framework evolution, one would
expect to see almost all internal APIs classes with code smells. However, from our
investigation, we have discovered that on average 57.2% of total number of classes have zero
code smells for all the studied Eclipse releases.

4.3 Common Code smells in Eclipse Releases

In this section, we present the results of the common code smells found in Eclipse
releases. This research considered 432 maintainability rules provided in the SonarQube tool
to detect code smells in Eclipse releases. The complete list of Maintainability rules is available
online. Maintainability rules create code violations that represent something wrong in the
code which will be reflected as a code smell. Tables 2, present result of the 25 commonest
code smells that arise as a result of the violation of the maintainability rules. The first column
in the table shows the unique rule ID whereas the second column shows a brief description
of the rule. The third column shows the total number of code smells that are generated as a
consequence of violating a given maintainability rule in all the analyzed Eclipse releases. A
detailed list of all code smell found in Eclipse releases can be found on GitHub using the URL
provide in the data availability section.

4. CONCLUSION
In this research paper, we used SonarQube to study code smell trends in the Eclipse

framework. We focused on establishing if there exist code smell-free interfaces which can
be recommend to the developers. We chose SonarQube because it is an open-source tool
thus available for use and can detect code smells early enough during development. We have
discovered that on average, there exist over 36.1% and 57.2% of the total interfaces in a given
Eclipse release are code smell-free public APIs and internal APIs respectively. This finding

https://doi.org/10.17509/seict.v6i1.76200

Simon Kawuma et al.,	An	Empirical	Analysis	of	Code…		| 10

DOI: https://doi.org/10.17509/seict.v6i1.76200
p-ISSN 2774-1656 e-ISSN 2774-1699

implies that the majority of the Eclipse interfaces are well-tested by their developers before
they commit them to be part of the Eclipse framework ecosystem. The average number of
code smell and technical Debt is 147,277 and 2,744 days in all the studied Eclipse releases.
Furthermore, we observed a linear increase of code smells across all the analyzed Eclipse
major releases. This trend can be attributed to the fact that as the Eclipse framework evolves,
new functionality is added to it for example more projects, classes and methods and hence
the line of code (LOC) increases. Therefore, the added functionalities come with new code
smells. In addition, Eclipse has a large community of developers and committers who
contribute to its large code base. Furthermore, the total number of code smells discovered
would give an insight on how much time and effort is needed by both the framework
developer and interface users to remove code smells. In Table 2, we listed the commonest
code smells reported by SonarQube in all the analyzed Eclipse releases. This finding is
interesting because it provides information to interfaces providers and users about the
common code smell and thus, they should adhere to good coding principles to avoid code
smells in their applications.

 In a follow-up study, we intend to investigate the popularity of the identified code smell-
free interfaces by looking at both internal and external usage. Internal interface utilization
can be determined by examining how many packages and libraries in the Eclipse framework
use the discovered code smell-free interfaces. The number of applications on GitHub that
have code smell-free interfaces can be used to determine external usage. Similarly, external
utilization can be calculated by counting the number of developers who have used or touched
a specific code smell-free interface.

5. ACKNOWLEDGMENT
The authors would like to thank and acknowledge staff in computing services department

at Mbarara University of Science and Technology for providing space on their serve where the
study experiment was carried out.

6. REFERENCES
T. Tourwé and T. Mens, "Automated support for framework-based software," in International

Conference on Software Maintenance, 2003. ICSM 2003. Proceedings., 2003, pp. 148-
157: IEEE.

D. Konstantopoulos, J. Marien, M. Pinkerton, and E. Braude, "Best principles in the design of
shared software," in 2009 33rd Annual IEEE International Computer Software and
Applications Conference, 2009, vol. 2, pp. 287-292: IEEE.

J. Businge, S. Kawuma, M. Openja, E. Bainomugisha, and A. Serebrenik, "How stable are
eclipse application framework internal interfaces?," in 2019 IEEE 26th international
conference on software analysis, evolution and reengineering (SANER), 2019, pp. 117-
127: IEEE.

J. Businge, A. Serebrenik, and M. G. J. S. Q. J. Van Den Brand, "Eclipse API usage: the good and
the bad," vol. 23, pp. 107-141, 2015.

A. Hora, M. T. Valente, R. Robbes, and N. Anquetil, "When should internal interfaces be
promoted to public?," in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2016, pp. 278-289.

J. Businge, A. Serebrenik, and M. van den Brand, "Analyzing the Eclipse API usage: Putting the
developer in the loop," in 2013 17th European Conference on Software Maintenance
and Reengineering, 2013, pp. 37-46: IEEE.

https://doi.org/10.17509/seict.v6i1.76200

11 |	Journal	of	Software	Engineering,	Information	and	Communication	Technology	(SEICT),	Volume	6	
Issue	1,	June	2025	Page	01-12	

DOI: https://doi.org/10.17509/seict.v6i1.76200
p-ISSN 2774-1656 e-ISSN 2774-1699

D. Johannes, F. Khomh, and G. J. S. Q. J. Antoniol, "A large-scale empirical study of code smells
in JavaScript projects," vol. 27, pp. 1271-1314, 2019.

A. Gupta, B. Suri, and S. Misra, "A systematic literature review: code bad smells in java source
code," in Computational Science and Its Applications–ICCSA 2017: 17th International
Conference, Trieste, Italy, July 3-6, 2017, Proceedings, Part V 17, 2017, pp. 665-682:
Springer.

R. S. Menshawy, A. H. Yousef, and A. Salem, "Code smells and detection techniques: a survey,"
in 2021 international mobile, intelligent, and ubiquitous computing conference (MIUCC),
2021, pp. 78-83: IEEE.

U. Mansoor, M. Kessentini, B. R. Maxim, and K. J. S. Q. J. Deb, "Multi-objective code-smells
detection using good and bad design examples," vol. 25, pp. 529-552, 2017.

E. Doğan, E. J. I. Tüzün, and S. Technology, "Towards a taxonomy of code review smells," vol.
142, p. 106737, 2022.

A. Tahir, A. Yamashita, S. Licorish, J. Dietrich, and S. Counsell, "Can you tell me if it smells? a
study on how developers discuss code smells and anti-patterns in stack overflow," in
Proceedings of the 22nd International Conference on Evaluation and Assessment in
Software Engineering 2018, 2018, pp. 68-78.

M. M. Rahman, A. Satter, M. M. A. Joarder, and K. Sakib, "An Empirical Study on the
Occurrences of Code Smells in Open Source and Industrial Projects," in Proceedings of
the 16th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, 2022, pp. 289-294.

S. Kawuma, J. Businge, and E. Bainomugisha, "Can we find stable alternatives for unstable
eclipse interfaces?," in 2016 IEEE 24th international conference on program
comprehension (ICPC), 2016, pp. 1-10: IEEE.

S. Kawuma and E. J. a. p. a. Nabaasa, "Identification of promoted eclipse unstable interfaces
using clone detection technique," 2018.

L. Guerrouj et al., "Investigating the relation between lexical smells and change-and fault-
proneness: an empirical study," vol. 25, pp. 641-670, 2017.

B. Seref and O. J. I. J. S. E. A. Tanriover, "Software code maintainability: a literature review,"
2016.

A. J. Jafari, D. E. Costa, R. Abdalkareem, E. Shihab, and N. J. I. T. o. S. E. Tsantalis, "Dependency
smells in javascript projects," vol. 48, no. 10, pp. 3790-3807, 2021.

G. Lacerda, F. Petrillo, M. Pimenta, Y. G. J. J. o. S. Guéhéneuc, and Software, "Code smells and
refactoring: A tertiary systematic review of challenges and observations," vol. 167, p.
110610, 2020.

M. Agnihotri and A. J. J. o. I. P. S. Chug, "A systematic literature survey of software metrics,
code smells and refactoring techniques," vol. 16, no. 4, pp. 915-934, 2020.

H. M. dos Santos, V. H. Durelli, M. Souza, E. Figueiredo, L. T. da Silva, and R. S. Durelli,
"Cleangame: Gamifying the identification of code smells," in Proceedings of the XXXIII
Brazilian Symposium on Software Engineering, 2019, pp. 437-446.

P. Meananeatra, "Identifying refactoring sequences for improving software maintainability,"
in Proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering, 2012, pp. 406-409.

D. Taibi, A. Janes, V. J. I. Lenarduzzi, and S. Technology, "How developers perceive smells in
source code: A replicated study," vol. 92, pp. 223-235, 2017.

https://doi.org/10.17509/seict.v6i1.76200

Simon Kawuma et al.,	An	Empirical	Analysis	of	Code…		| 12

DOI: https://doi.org/10.17509/seict.v6i1.76200
p-ISSN 2774-1656 e-ISSN 2774-1699

A. Yamashita and L. Moonen, "Do developers care about code smells? An exploratory survey,"
in 2013 20th working conference on reverse engineering (WCRE), 2013, pp. 242-251:
IEEE.

D. J. Kim, "An empirical study on the evolution of test smell," in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: Companion Proceedings, 2020,
pp. 149-151.

S. Jain and A. Saha, "An Empirical Study on Research and Developmental Opportunities in
Refactoring Practices," in SEKE, 2019, pp. 313-418.

B. F. Békefi, K. Szabados, and A. Kovács, "A case study on the effects and limitations of
refactoring," in 2019 IEEE 15th International Scientific Conference on Informatics, 2019,
pp. 000213-000218: IEEE.

S. Vidal, I. Berra, S. Zulliani, C. Marcos, J. A. D. J. A. T. o. S. E. Pace, and Methodology,
"Assessing the refactoring of brain methods," vol. 27, no. 1, pp. 1-43, 2018.

A. AbuHassan, M. Alshayeb, L. J. J. o. S. E. Ghouti, and Process, "Software smell detection
techniques: A systematic literature review," vol. 33, no. 3, p. e2320, 2021.

A. Kaur, G. J. H. S. Dhiman, N. I. O. A. Theory, and I. Applications, "A review on search-based
tools and techniques to identify bad code smells in object-oriented systems," pp. 909-
921, 2019.

M. Tufano et al., "When and why your code starts to smell bad," in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, 2015, vol. 1, pp. 403-414: IEEE.

V. Lenarduzzi, A. Sillitti, and D. Taibi, "Analyzing forty years of software maintenance models,"
in 2017 IEEE/ACM 39th international conference on software engineering companion
(ICSE-C), 2017, pp. 146-148: IEEE.

V. Lenarduzzi, A. Sillitti, and D. Taibi, "A survey on code analysis tools for software
maintenance prediction," in Proceedings of 6th International Conference in Software
Engineering for Defence Applications: SEDA 2018 6, 2020, pp. 165-175: Springer.

D. Marcilio, R. Bonifácio, E. Monteiro, E. Canedo, W. Luz, and G. Pinto, "Are static analysis
violations really fixed? a closer look at realistic usage of sonarqube," in 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC), 2019, pp. 209-219:
IEEE.

C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and A. J. E. S. E. Zaidman, "How
developers engage with static analysis tools in different contexts," vol. 25, pp. 1419-
1457, 2020.

L. Lavazza, D. Tosi, and S. Morasca, "An empirical study on the persistence of spotbugs issues
in open-source software evolution," in International Conference on the Quality of
Information and Communications Technology, 2020, pp. 144-151: Springer.

https://doi.org/10.17509/seict.v6i1.76200

