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A B S T R A C T   A R T I C L E   I N F O 

Eclipse Framework developers claim that public APIs are supported 
whereas internal APIs are unsupported. However, there is no guarantee 
that these interfaces are well-tested because several code smells are 
reported by interface users. Applications that use code-smelly interfaces 
risk failing if the code-smell are not fixed.  Previous research revealed that 
not all code smells can be resolved and fixed within a short period. Thus, 
interface users have to fix the code smells themselves or abandon that 
particular interface. To avoid waiting indefinitely for solutions from 
interface developers or getting involved in code smell fixing, users should 
use code-smell-free interfaces. However, interface users may not be 
aware of the existence   of code smell-free interfaces in the Eclipse 
framework. In this research   study, we used SonarQube tool to carry out 
an empirical investigation on 28 major Eclipse releases to establish the 
existence of code-smell- free interfaces. We provide a data set of 218K 
and 321K code-smell-free public APIs and internal APIs classes 
respectively. Also, we discovered that on average, 36.1% and 57.2% of 
the total interfaces in a given Eclipse release are code smell-free public 
APIs and internal APIs respectively in all the studied Eclipse releases. 
Furthermore, we have discovered that the number of code smells linearly 
increases as the Eclipse framework evolves. The average number of code 
smell and technical Debt is 147K and 2,744 days in all the studied Eclipse 
releases.  Results from this study can be used by both interface providers 
and users as a starting point to know tested interfaces and also estimate 
efforts needed to fix code smells in Eclipse Frameworks. 
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1. INTRODUCTION 
 

Frameworks and libraries serve as the foundation for application development (T. Tourwé 
and T. Mens, 2003). This approach in application development encourages functionality reuse 
(D. Konstantopoulos et al., 2009) and boosts productivity (J. Businge, 2019). This is why major 
application frameworks, including Eclipse, jBPM, JDK and JUnit, frequently provide public 
(stable) interfaces (APIs) to developers. In addition to public APIs, all of these frameworks 
offer internal APIs. Eclipse is a popular and widely accepted application framework. Eclipse is 
a vast and complex open-source software system used by thousands of application 
developers. Eclipse has evolved for more than two decades, with over 28 main and 55 minor 
versions. Eclipse, jBPM, and jUnit follow the convention of internal interfaces by using the 
substring internal in their package names, but JDK's internal API packages begin with the 
substring sun. 

Framework developers encourage the use of public APIs because they are considered 
stable, mature, and supported, whereas internal APIs are discouraged because they are 
unstable, unsupported, immature, and subject to change or removal without notice (J. 
Businge, 2019). Despite the fact that internal APIs are discouraged, they are widely used. 
Businge et al. discovered that around 44% of the 512 Eclipse plug-ins employ internal APIs (J. 
Businge et al., 2015). (A. Hora, 2016) found that 23.5% of 9702 Eclipse client projects stored 
on GitHub relied on internal APIs. Experienced application developers stated that leveraging 
internal APIs is a better option than creating their own APIs from scratch (J. Businge, A et al., 
2013). 

Usage of both public APIs and internal APIs by developers is inevitable because when used, 
development time is reduced and thus the application can reach its market within a shorter 
period of time.  Although  interface  providers  claim  that public APIs  are supported, in 
contrast, internal APIs  are unsupported, there  is no guarantee that these  interfaces  are  
well tested  because  several  code smells are  reported by interface  users (D. Johannes et al, 
2019). Code smells reveal something wrong with the underlying code of the application which 
can lead to the eventual failure of an application or slows its performance. They include 
duplicate  codes, long methods,  comments,  long parameter lists, unnecessary  primitive  
variables  dead  code and  data  clumps etc. (A. Gupta et al, 2017). These can affect the speed 
of activity and may also become a detriment to an application program. 

 Applications that might use code-smelly interfaces risk failing if the code smells are not 
fixed. This implies that the application developer must be ready to fix the code smells 
themselves.  Code smell fixing can be done by the  framework developers  on behalf of the  
user following a typical process of code smell fixing which may include refactoring  the code 
(A. Gupta et al, 2017), (R. S. Menshawy, 2021). Prior to refactoring, the initial process includes 
identifying  code fragments  that violate  the  semantic  properties  or structure for instance  
the complexity  or coupling (U. Mansoor, 2017), then  the code smell can be assigned to a 
developer who does the fixing. This is followed by reviewing the fixed code to verify if the 
code smell is resolved.  According to Mansoor, Usman, et al, refactoring is really challenging. 
According to reports, software maintainers spend at least 60% of their time comprehending 
the code, and maintenance accounts for around 80% of software costs (U. Mansoor, 2017), 
(E. Doğan et al., 2022). Therefore, fixing and resolving code smells is characterized by a long 
period hence the interface user might wait indefinitely for a solution from the developer. 
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     Furthermore, software  with  code smells actually  work and  therefore  can  give an 
output, but  it  is characterized by slowed processing (A. Tahir et al., 2018). This increases the 
risk of failure as well as making the program vulnerable to bugs which in turn contributes to 
poor code quality and hence increases the technical debt.  This implies that interface users 
are left with no choice but to fix the code smells themselves or abandon the interfaces. 
Reusing source code with code smells could lead to high maintenance time and costs. 
Literature provides a long list of code smell, and developers are advised to avoid code smell 
when developing new and reusing existing code, as it increases the effort and cost of 
identifying and refactoring code after system development (M. M. Rahman et al., 2022). 
However, remembering this long list is difficult especially for new developers. As a solution to 
avoid huge costs, waiting indefinitely for solutions from interface developers, or getting 
involved in code smell fixing, users should use code smell-free interfaces.  Unfortunately, 
these users may be unaware that the     Eclipse framework has code smell-free interfaces. 

In addition, interface users manually search for the functionality they require in the Eclipse 
Framework (J. Businge., 2013). Because Eclipse is a vast and complex software framework, it 
is possible that interface users will first encounter code smelly interfaces rather than code 
smell-free interfaces when looking for functionality to use in their applications. In this study, 
we used SonarQube static code analyser tool to investigate 28 Eclipse Framework releases, 
with the purpose of determining the presence of code smell-free interfaces as the Eclipse 
framework evolves. The study's goal is to recommend the code smell-free interfaces to 
application developers. We developed five research questions namely: 

1) RQ1: what is the number code smells in Eclipse Frameworks? 

2) RQ2: What is the Technical Debt needed to fix code smell in Eclipse Frameworks? 

3) RQ3:  What is the percentage of code smell-free internal interfaces in Eclipse 
Framework? 

4) RQ4:  What is the percentage of code smell-free public interfaces in Eclipse 
Framework? 

5) RQ5:  What is the commonest code smell in Eclipse Frameworks? 

To   address    these   research    questions, we   used static    code   analysis   tools called 
SonarQube (S. Kawuma and Nabaasa, 2018) to extract information about code smell.  In 
summary, the contributions of this work are threefold: 

1) We provide a dataset of 218K and 321K code smell-free public APIs and internal APIs 
classes respectively to Eclipse interface providers and users. Providers can use this dataset to 
estimate the efforts needed to remove code smells. Users can look up code smell-free 
interfaces they want to use when developing their applications. 

2) The Eclipse interface providers claim that public APIs are good and stable interfaces 
[4]. Indeed, this research study has empirically confirmed that public APIs are good since we 
have discovered that over 87.3% of public APIs are code smell-free in all studied Eclipse 
releases. 

3) Internal APIs are discouraged by interface providers because they are often immature 
and unsupported However, this research study has empirically confirmed that not all internal 
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APIs are bad since over 91.5% of the internal APIs were code smell-free in all studied Eclipse 
releases and thus users can use them when developing their applications. 

The rest of the paper is organized as follows: Section 2 presents related work, whereas 
Section 3 presents Research Methodology and Section 4 discusses experimental results.  
Finally, Section 5 concludes the paper and suggests some areas for future research. 

2. METHODS 
One of the conclusions of prior studies by Businge et al. was that interface users are always 

utilizing unstable interfaces, and the reason for this is because there are no alternative stable 
interfaces that provide the same functionality (J. Businge et al., 2013). Indeed, Kawuma et al. 
demonstrated that less than 1% of APIs provide the same or similar functionality as non-APIs 
(S. Kawuma et al., 2016). In a recent study, Businge et al (J. Businge et al., 2013) used a clone 
detection technique to investigate the stability of the internal interface as the Eclipse 
framework evolved. They detected 327K stable internal interfaces and suggested them as 
potential candidates for promotion. (Hora et al., 2016) revealed that 7% of 2,277 of internal 
interfaces were promoted to public interfaces and the promotion rate was too low. (S. 
Kawuma and Nabaasa, 2018) confirmed that the rate at which internal APIs are promoted to 
public APIs is slow. 

(L. Guerrouj et al., 2017) conducted research on 30 versions of three projects: ANT, 
ArgoUML, and Hibernate, to determine the association between lexical smell and software 
quality, as well as their interaction with design smells. They detected 29 smells, including 13 
design smells and 16 lexical smells.  

(B. Seref and Tanriover., 2016) carried out a survey on existing literature about  software 
code maintainability. In their survey, they discovered that all authors stated that 
maintainability increases the quality   of software and it is one of the most important 
attributes. (Jafari  et al., 2021) investigated dependency smell which concerns developers who 
want to stay up to date with the latest features and fixes while ensuring backward 
compatibility. They examined the commit data for a dataset of 1,146 active JavaScript 
repositories, quantify and understand dependency smells and conducted a series of surveys 
with practitioners who identified and quantified seven dependency smells with varying 
degree of popularity. They also discovered that two or more distinct smells appear in 80 
percent of JavaScript project and that dependency smell cause security threats, runtime error 
and dependency breakage. 

     Previous survey studies have examined the issues of code smells, including definitions, 
detection methodologies, and refactoring tools (G. Lacerda et al., 2020),( M. Agnihotri et al., 
2020), and (H. M. dos Santos et al., 2019). Several research (P. Meananeatra, 2012), (D. Taibi 
et al., 2017), (A. Yamashita and L. Moonen, 2013), and (D. J. Kim, 2020) examined developers' 
awareness of code smells, perceptions, and motivations for deleting them. While other 
studies (S. Jain and A. Saha, 2019), (B. F. Békefi et al., 2019) and (S. Vidal et al., 2019) focused 
on refactoring activities and challenges. Several research (Yousef, and A. Salem, 2021), (A. 
AbuHassan et al., 2021) and (A. Kaur et al., 2019) examined the methods and algorithms 
utilized in detection and refactoring tools. Furthermore, (M. Tufano et al., 2015) studied the 
evolution of code smells in 200 open-source Java systems namely; Android, Apache, and 
Eclipse ecosystems and discovered that code smells are introduced in  the code by both new 
and experienced engineers at the start of the project. Whereas (D. Johannes et al., 2019) 
examined the effect of code smells on the fault-proneness of JavaScript server-side projects. 
Although some of the above studies look at public APIs and internal interface by identifying 
and recommending internal Interface for promotion, whereas other studies look at code smell 
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definition, detection tools, evolution, fault-proneness, management, none of the above 
authors studied code smell composition, distribution, remediation efforts (Technical Debt) to 
fix them and also existence of code smell-free interfaces in Eclipse Framework as compared 
to our study. This section describes the experimental setup used to collect data for the study 
questions. 
 

3.1 Eclipse Releases Collection 

Table 1. Eclipse major releases and their corresponding release dates 

Major         Release         Java         Java 

Releases         Date           LOC      Classes 

Major          Release         Java         Java. 

Release          Date           LOC      Classes 
E-1.0       07-Nov-01     449K       4,608 

E-2.0        27-Jun-02      769K       6,751 

E-2.1       27-Mar-03     959K       7,911 

E-3.0        25-Jun-04      1.3M      10,634 

E-3.1        27-Jun-05      1.6M      12,299 

E-3.2        29-Jun-06        2M        14,941 

E-3.3        25-Jun-07      2.1M      16,036 

E-3.4        17-Jun-08      2.5M      18,800 

E-3.5        11-Jun-09      2.6M      19,169 

E-3.6        08-Jun-10      2.7M      20,922 

E-3.7        13-Jun-11     2.75M     21,104 

E-3.8        27-Jun-12      2.8M      22,477 

E-4.0        27-Jul-10       2.6M      20,498 

E-4.1        20-Jun-11      2.7M      21,234 

E-4.2       27-Jun-12       2.8M      22,443 

E-4.3       05-Jun-13       2.9M      22,798 

E-4.4       06-Jun-14       3.1M      23,880 

E-4.5       03-Jun-15      3.14M     23,920 

E-4.6       06-Jun-16       3.2M      23,936 

E-4.7       28-Jun-17       3.3M       25900 

E-4.8       27-Jun-18      3.39M     26,180 

E-4.9       19-Sept-18      3.4M      26,363 

E-4.11        Mar-19         3.5M      27,448 

E-4.12         Jun-19        3.51M     27,784 

E-4.13        Sept-19       3.52M     27,904 

E-4.14         Dec-19        3.53M     27,976 

E-4.15        Mar-20        3.55M     28,500 

E-4.16         Jun-20         3.6M      28,135 

       This section explains the data sources for our investigation. Our investigation was based 
on 28 Eclipse SDK major releases from the Eclipse project Archive website. Table 1 below 
present the different Eclipse major releases we considered in this research.  The first column 
shows the major releases while the second column shows their corresponding release date.  
The third column shows the java Lines of code (LOC) in each major Eclipse release while the 
fourth column shows the total number of java classes in a given Eclipse major release. This 
research study chose Eclipse as a topic of study because it is a widely used and embraced 
open-source framework that will continue to draw new developers. The Eclipse framework is 
constantly changing, with a new version being released every three months. This provides an 
opportunity to examine code smell evolutionary tendencies as the framework evolves. This 
study focused on Eclipse major versions because, as the framework evolves from one major 
version to the next, new projects, sub-projects, packages, classes, interfaces, fields, and 
methods are either introduced, updated, or removed. 

3.2 Code smell Collection and Extraction Using SonarQube Tool. 

       In this section, we present how we extracted data for research questions RQ1-RQ5. We 
used  the  SonarQube  tool  (version  8.2) to  extract information about code smells in the 
different Eclipse releases. We relied on this tool because it is broadly used by thousands of 
users in academic  research  settings (A. Sillitti, and D. Taibi, 2017), (V. Lenarduzzi et al., 2017) 
and in industry (C. Vassallo et al., 2020), (L. Lavazza et al., 2020). We configured and ran 
SonarQube on a local computer. We  used  the  432 maintainability rules that cover code smell 
detection  in SonarQube. When any of the rules are violated, then that particular source code 
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manifests as a code smells. We investigated the total number of code smells, the code smell 
remediation effort to fix all code smells and also collected information about the most 
dominant code smell type i.e. the most violated rule for every Eclipse major release.  In 
addition to  code smell detection, SonarQube  estimates  the code smell remediation effort 
in days  and an 8-hour day is assumed. 

      Figure 1 illustrates the procedure we followed to detect and extract code smell 
information in all the analyzed Eclipse releases. SonarQube takes source directories 
containing Java files as input to detect possible code smells at specific points in the class. Then 
it produces output reports for each Eclipse release which can be accessed on the SonarQube 
server via the following URL http://localhost:9000. A Sample output reports for Eclipse-4.16 
obtained from SonarQube is shown in figure 1 below. For SonarQube, each file in the report 
has a Maintainability Rating (MR) assigned by SonarQube depending on the nature and 
number of code smells found in the class of source files under investigation. For example, 
from figure 1, the last rows has file with MR of A i.e. it has no code smell. The tool counts the 
number of code smells reported in each release and the Technical Debt as shown in the 
report. 

 
Figure 1. SonarQube Code Smell Detection Tool 

3.3 Data extraction for Number of code smell and Technical Debt in Eclipse Releases 

In this section, we present the procedure we used to extract data for research questions RQ1: 
what is the number code smells in Eclipse Frameworks? and RQ2: What is the Technical Debt 
needed to fix code smell in Eclipse Frameworks? Information about the code smells and 
technical debt i.e. time needs to fixed them was extracted from the SonarQube reports. The 
total number of smell code and Technical Debt is provided in reports as illustrated in figure 1. 
For example, from figure 1,1K code smells were detected and 11 days of technical debt were 
needed to fix the identified code smells. 

3.4 Data extraction for code smell- Free Interfaces and in Eclipse Releases 

     We used SonarQube tool to extract information about code smell-free in each Eclipse 
release to address RQ3:  What is the percentage of code smell-free internal interfaces in 
Eclipse Framework? and RQ4:  What is the percentage of code smell-free public interfaces 
in Eclipse Framework? We considered interfaces that have a maintainability rating of A as 
illustrated in the output report figure 1. To determine the percentage of code smell-free 
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public interfaces and internal interface in a given Eclipse release, we counted both the 
number of classes with and without a substring internal in their file path for internal interface 
and public interfaces respectfully. We used equation 1 and 2 to calculate percentage of 
internal and public code smell-free interfaces respectfully by looking at public APIs and 
internal APIs individually in a given Eclipse release as shown below; 

𝐶𝑜𝑑𝑒	𝑠𝑚𝑒𝑙𝑙	𝑓𝑟𝑒𝑒	𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = !"#$%&	()*+%&*,-		.*+%&),/%	01+2	3,1*+,1*,$1-+4	&,+1*5	6	
7(+,-	*"#$%&	()	1*+%&*,-	1*+%&),/%	1*	+2%	8/-19:%	&%-%,:%:

∗ 100%    (1) 

𝐶𝑜𝑑𝑒	𝑠𝑚𝑒𝑙𝑙	𝑓𝑟𝑒𝑒	𝑝𝑢𝑏𝑙𝑖𝑐	𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = !"#$%&	()	9"$-1/	.*+%&),/%	01+2	3,1*+,1*,$1-+4	&,+1*5	6	
7(+,-	*"#$%&	()	9"$-1/	1*+%&),/%	1*	+2%	8/-19:%	&%-%,:%:

∗ 100%             (2)      

    To determine the percentage of code smell free public APIs and interfaces APIs as a 
combination in a given Eclipse release, code smell free public APIs and internal APIs were each 
counted separately in each release and then the total number of both public and internal APIs 
in a given release was calculated. To get the percentage comparison of code smell free public 
and internal APIs, we used equations 3 and 4 respectively as shown below;   

𝐶𝑜𝑑𝑒	𝑠𝑚𝑒𝑙𝑙	𝑓𝑟𝑒𝑒	𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = !"#$%&	()*+%&*,-		.*+%&),/%	01+2	3,1*+,1*,$1-+4	&,+1*5	6	
7(+,-		*"#$%&	()	1*+%&),/%:	1*	+2%	8/-19:%	&%-%,:%:

∗ 100%   (3) 

𝐶𝑜𝑑𝑒	𝑠𝑚𝑒𝑙𝑙	𝑓𝑟𝑒𝑒	𝑝𝑢𝑏𝑙𝑖𝑐	𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = !"#$%&	()	9"$-1/	.*+%&),/%	01+2	3,1*+,1*,$1-+4	&,+1*5	6	
7(+,-		*"#$%&	()	1*+%&),/%:	1*	+2%	8/-19:%	&%-%,:%:

∗ 100%  (4)                     

3.5 Data extraction for commonest code smell in Eclipse Releases 

      To address research question RQ5: What is the commonest code smell in Eclipse 
Frameworks? We used the SonarQube tool to extract information about code smell 
maintainability rules in the different Eclipse releases. SonarQube has 432 maintainability rules 
that are uses to detect code smells and if any of the rules is violated, that particular source 
code manifests as a code smell. The tool list the violated rule together with the code smell 
which violated it. To establish the commonest code smell, we count the frequency the 
maintainability rule is violated. 
3. RESULTS AND DISCUSSION 
3.1 Number of code smells and Technical Debt in Eclipse Releases 

 
Figure 2. Number of Code smells and Technical Debt in Eclipse Releases 
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Figure 2 presents   the total   number of code smells together with the Technical Debt 
need to fix them in all the different Eclipse releases. In Figure 2 the bar graphs represent the 
total number of code smells while the line graph represents the Technical Debt i.e. the 
remediation effort needed to fix the code smells in Eclipse releases. Focusing on both the bar 
graphs and line graphs, we see a linear increase in the number of code smells and Technical 
Debt. Furthermore, there is a decline in the code smells and Technical Debt between Eclipse-
3.8 and Eclipse-4.0 and thereafter a linear increase is observed after Eclipse-4.0.  The slight 
change between Eclipse-3.8 and Eclipse-4.0 can be attributed to the fact that some classes 
were deleted from Eclipse-3.8 as observed from Table 1 thus more code smells were deleted 
which further led to less Technical Debt to fix the code smells. From figure 2 we observe that 
the minimum and maximum number of code smell detected is between 31,199 to 186,590 
across the studied Eclipse releases. Whereas the minimum and maximum efforts need to fix 
the identified code smells ranges between 545 to 3,391 days in all analyzed Eclipse releases. 
The average number of code smell and technical Debt is 147,277 and 2,744 days in all the 
studied Eclipse releases. 

4.2 Percentage of code smell-Free Interfaces in Eclipse Releases 

 
Figure 3. Code Smell-free Public APIs and Internal APIs Categories. 

 
Figure 4. Code Smell-free Interfaces in Eclipse Releases. 
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Figures 3 and 4 present results corresponding to the percentage of code smell-free 
interfaces in different Eclipse major releases. Focusing on figure 3, for each Eclipse release, 
the first and second bars present the percentage of code smell-free classes which are public 
APIs and internal APIs respectively. In the same figure, we observe that there exist over 87.3% 
and 91.5% code smell-free public APIs and internal APIs respectively. In figure 4, the bar graph 
presents code smell-free public APIs and internal APIs as a percentage of the total number of 
interfaces in each Eclipse release while the line graph presents the percentage of the total 
number of code smell-free interfaces (i.e. both public APIS and internal APIS) with respect to 
the total number of interfaces in a given release.  

From Figure 4 and specifically focusing on bar graph, we see that majority of code smell-
free classes are internal APIs compared to public APIs.  This is because internal APIs  are  twice 
as much  as the  public  APIS  during  the  evolution  of Eclipse (S. Kawuma et al., 2016). The 
percentage of code smell-free public APIs ranges from 24.9%-46.9% whereas that of internal 
interfaces is between 47.4%-68.2% of the total interfaces respectively in all the analyzed 
Eclipse releases. On average, 36.1% and 57.2% of the total interfaces in a given Eclipse release 
are code smell-free public APIS and internal APIs respectively.  Focusing on the line graph in 
figure 4, we observe that over 89.6% of the total   number   of classes in a given Eclipse release 
are code smell-free.  This higher percentage from both may imply that Eclipse interfaces are 
generally tested for code smell. Furthermore, since internal APIs are considered to be 
immature, and unsupported (J. Businge et al., 2019) during framework evolution, one would 
expect to see almost all internal APIs classes with code smells. However, from our 
investigation, we have discovered that on average 57.2% of total number of classes have zero 
code smells for all the studied Eclipse releases. 

4.3 Common Code smells in Eclipse Releases 

In this section, we present the results of the common code smells found in Eclipse 
releases.  This research considered 432 maintainability rules provided in the SonarQube tool 
to detect code smells in Eclipse releases. The complete  list of Maintainability rules is available  
online. Maintainability rules create code violations that represent something wrong in the 
code which will be reflected as a code smell. Tables 2, present result of the 25 commonest 
code smells that arise as a result of the violation of the maintainability rules. The first column 
in the table shows the unique rule ID whereas the second column shows a brief description 
of the rule.  The third column shows the total number of code smells that are generated as a 
consequence of violating a given maintainability rule in all the analyzed Eclipse releases.  A 
detailed list of all code smell found in Eclipse releases can be found on GitHub using the URL 
provide in the data availability section. 

4. CONCLUSION 
In this research paper, we used SonarQube to study code smell trends in the Eclipse 

framework. We focused on establishing   if there exist code smell-free interfaces which can 
be recommend to the developers.  We chose SonarQube because it is an open-source tool 
thus available for use and can detect code smells early enough during development. We have 
discovered that on average, there exist over 36.1% and 57.2% of the total interfaces in a given 
Eclipse release are code smell-free public APIs and internal APIs respectively. This finding 
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implies that the majority of the Eclipse interfaces are well-tested by their developers before 
they commit them to be part of the Eclipse framework ecosystem.  The average number of 
code smell and technical Debt is 147,277 and 2,744 days in all the studied Eclipse releases. 
Furthermore, we observed a linear increase of code smells across all the analyzed Eclipse 
major releases. This trend can be attributed to the fact that as the Eclipse framework evolves, 
new functionality is added to it for example more projects, classes and methods and hence 
the line of code (LOC) increases. Therefore, the added functionalities come with new code 
smells. In addition, Eclipse has a large community of developers and committers who 
contribute to its large code base. Furthermore, the total number of code smells discovered 
would give an insight on how much time and effort is needed by both the framework 
developer and interface users to remove code smells.  In Table 2, we listed the commonest 
code smells reported by SonarQube in all the analyzed Eclipse releases. This finding is 
interesting because it provides information to interfaces providers and users about the 
common code smell and thus, they should adhere to good coding principles to avoid code 
smells in their applications. 

 In a follow-up study, we intend to investigate the popularity of the identified code smell-
free interfaces by looking at both internal and external usage. Internal interface utilization 
can be determined by examining how many packages and libraries in the Eclipse framework 
use the discovered code smell-free interfaces. The number of applications on GitHub that 
have code smell-free interfaces can be used to determine external usage. Similarly, external 
utilization can be calculated by counting the number of developers who have used or touched 
a specific code smell-free interface. 
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