Prediction of Mobile Phone Ratings with SVM Regression Model
Abstract
Mobile is a communication tool that has capabilities such as computers that are easy to carry
anywhere with various functions for human life. Mobile phones certainly have quite interesting
trends, such as the emergence of models, types, and brands which of course vary. The purpose of
this study was to determine the prediction of mobile phone ratings based on various criteria
using the SVM method. These criteria include price, camera, internal memory, storage, color
and so on. From the SVM model, the regression type gets predictive results, where there are
values that are adjusted to the model. Although the accuracy is not good, in the prediction
process the difference is not too far, but slightly different. The more you add related features, the
the training accuracy will be better.
Full Text:
PDFReferences
Darmawan, A., Kustian, N., & Rahayu, W. (2018). IMPLEMENTASI DATA
MINING MENGGUNAKAN MODEL SVM UNTUK PREDIKSI KEPUASAN
PENGUNJUNG TAMAN TABEBUYA. Jurnal String Vol. 2 No. 3, 299-307.
E. D. Wahyuni, A. A. Arifiyanti, & M. Kustyani. (2019). “Exploratory Data Analysis dalam Konteks Klasifikasi Data Mining,” Pros. Nas. Rekayasa Teknol. Ind. dan Inf. XIV Tahun 2019, vol. 2019, no. November, pp. 263–269.
Feri Prasetyo, RACHMATSYAH, A. D., & Wahyu Tisno Atmojo. (2021). Pemilihan Handphone dengan Analisis Konjoin Berdasarkan Preferensi Siswa SMA di Kabupaten Bekasi untuk Sekolah Online. Teknomatika, 11(02), 137-142.
Ghorakavi, Veena. (2021). ML |Types of Regression Techniques. Url: https://www.geeksforgeeks.org/types-of-regression-techniques
Khasanah, Latifah Uswatun. (2020). Exploratory Data Analysis : Pahami Lebih Dalam untuk siap Hadapi industri data. Url: https://www.dqlab.id/data-analisis-machine-learning-untuk-proses-pengolahan-dat
a
DOI: https://doi.org/10.17509/seict.v4i2.64392
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Journal of Software Engineering, Information and Communication Technology (SEICT)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Software Engineering, Information and Communicaton Technology (SEICT),
(e-ISSN:2774-1699 | p-ISSN:2744-1656) published by Program Studi Rekayasa Perangkat Lunak, Kampus UPI di Cibiru.
Indexed by.