Analisis Rangkaian Wheatstone Bridge Menggunakan Simulator Circuit Wizard, Proteus, dan Multisim

Winda Pratiwi, Syifaul Fuada, Farah Wardatul Zanah, Nissa Restyasari

Abstract


Rangkaian jembatan Wheatstone merupakan salah satu konfigurasi rangkaian resistor yang berfungsi untuk mengukur perubahan resistansi (hambatan) yang sangat kecil, dan telah banyak digunakan pada rangkaian sensor. Rangkaian ini disusun seperti belah ketupat, sedikitnya empat buah resistor (R1, R2, R3, R4), dimana salah satunya merupakan resistor tidak tetap (R3) yang biasanya menggunakan variable Resistor. Kemudian, salah satunya lagi merupakan resistor yang dicari nilai resistansinya (R4). Penelitian ini bertujuan untuk mengeksplorasi rangkaian jembatan Wheatstone dengan tiga skenario. Pertama, yaitu pencarian salah satu nilai resistor (R4) yang tepat saat keadaan balance, atau saat arus yang mengalir di titik AB sama dengan Nol (IAB = 0 A). Kedua, mengukur tegangan jembatan Wheatstone (VAB) dengan nilai resistor yang bervariasi. Ketiga, mencari salah satu nilai resistor (R4), nilai hambatan pengganti dari semua hambatan (REq) saat keadaan balance, dan arus total yang mengalir (ITotal) pada rangkaian jembatan Wheatstone ketika VAB = 0 Volt. Analisis memanfaatkan tiga buah simulator offline, yaitu Circuit Wizard v.1.15, Proteus v.8.5, dan Multisim v.14.0. Kemudian hasil simulasi ketiganya dibandingkan dengan perhitungan teoretis. Hasil simulasi dari ketiga simulator tersebut membuktikan bahwa nilai arus dan tegangan pada rangkaian Wheatstone telah sesuai dengan perhitungan teori, dimana IAB = 0 A dan VAB = 0 V apabila keadaan seimbang. Dalam keadaan tidak setimbang, maka akan ada arus yang mengalir dari titik A ke titik B sehingga terdapat beda potensial, dimana nilai beda potensial ini sama dengan VA – VB. Artikel ini juga mengkaji performansi dan trade-off dari ketiga simulator tersebut saat eksperimen menggunakan rangkaian jembatan Wheatstone berdasarkan pengalaman (experience) langsung dalam sudut pandang peneliti.

Keywords


Wheatstone bridge; Circuit wizard; Proteus; Multisim; Simulator comparison

References


R. Lockhat, "Physics: Wheatstone bridge," Southern African Journal of Anaesthesia and Analgesia, pp. S100-101, 2020.

D. Herlan, "Studi Pengaruh Pengaman Galvanometer Terhadap Keakuratan Hasil Pengukuran Resistor Pada Jembatan Wheatstone Sederhana," Seminar Nasional Sains dan Teknologi, pp. 2-4, November 2014.

Oluwole, Olanipekun, and Ajide, "Design, construction and Testing of a strain gauge Instrument ," International Journal of Scientific & Engineering Research, vol. 6 , no. 4, April 2015.

M. Armana and A. Badarudin, "Studi Awal Sistem Akuisisi Data Tebal Cairan Aliran Dua Fase Air-udara pada Pipa Horizontal Menggunakan Parallel Wir," Prosiding Industrial Research Workshop and National Seminar, vol. 6, pp. 142-145, November 2015.

S. Pan and K. A. A. Makinwa, "A 10 fJ ·K2 Wheatstone Bridge Temperature Sensor With a Tail-Resistor-Linearized OTA," IEEE Journal Of Solid-State Circuits, September 2020.

P. I. Nursuhud, "Pengembangan Perangkat Praktikum Listrik Dinamis Pada Mata Kuliah Eksperimen Fisika Materi Jembatan Wheatstone," Universitas Negeri Semarang, p. Juni, 2016.

S. Fuada, Elektronika Dasar untuk Mahasiswa Teknik Telekomunikasi: Pendekatan Praktik secara Virtual Edisi II. Tanggerang, Banten: Media Edukasi Indonesia, 2021.

Y. D. T. uwariyah, "Analisa Resistivitas Kawat Penghantar Ditinjau Dari Metode Jembatan Wheatstone Dan Metode Hukum Ohm Pada Modul Praktikum Fisika," Bina Teknika, vol. XII, pp. 239-244, 2017.

Hartono, I. P. Sugito, "Rancang Bangun Sistem Pengukuran Pergeseran Tanah Menggunakan Sensor Variabel Resistor," Berkala Fisika, vol. XVIII, pp. 9 - 16, Januari 2015.

A. Harijanto, S. H. B. Prastowo, D. I. Pratiwi, "Analisis Hubungan Daya Hantar Listrik Dengan Total Dissolved Solid (TDS) Pada Air Minum Isi Ulang Di Sekitar Kampus Jember," FKIP E-proceeding, vol. 4, pp. 271-274, Desember 2019.

Y. Tie-Zhu, "Development of Wheatstone bridge and Kelvin bridge Simulation Experiment System Based on LabVIEW," Journal of Physics: Conference Series, vol. 1792, p. 012083, Februari 2021.

B. Anggraheny, A. Parastiwi, Y. R. Pratama, "Desain Sistem Kontrol Suhu Pada Paralel Split Flow Heat Exchanger Dengan Algoritma Fuzzy ," Elektronika dan Otomasi Industri, vol. VI, pp. 43--49, 2021.

M. Saeedi and R. Effatnejad, "A New Design of Dual-Axis Solar Tracking System with LDR sensors by Using the Wheatstone Bridge Circuit ," TechRxiv, 2021.

H. Jiang and K. A. A. Makinwa "Energy-Efficient Bridge-to-Digital Converters ," IEEE Costum Integrated Circuits Conference (CICC), p. 17, 2018.

H. Jiang, J. G. Vogel, S. Nihtianov, "A Power-Efficient Readout for Wheatstone-Bridge Sensors with COTS Components ," IEEE Custom Integrated Circuits Conference (CICC), pp. 1-7, April 2018.

P. R. Nagarajan, B. George, V. J. Kumar, "A Linearizing Digitizer for Wheatstone Bridge Based Signal Conditioning of Resistive Sensors," IEEE Sensor Journal, vol. XVII, Maret 2017.

H. Jiang, X. Tian, X. Deng, X. Zhao, L. Zhang, W. Zhang, J. Zhang, Y. Hwang, "Low Concentration Response Hydrogen Sensors Based on Wheatstone Bridge," Sensors, vol. XIX, p. 1096, Januari 2019.

S. Yan, Z. Cao, Z. Guo, Z. Zheng, A. Cao, Y. Qi, Q. Leng, W. Zhao, "Design and Fabrication of Full WheatstoneBridge-Based Angular GMR Sensors," Sensors, vol. XVIII, p. 1832, Juni 2018.

E. J. Beggs, J. F. Costa, J. V. Tucker, "Physical Oracles: The Turing Machine and the Wheatstone Bridge," Studia Logica, pp. 279-300, 2010.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 CC BY SA

TELNECT https://ejournal.upi.edu/index.php/TELNECT/index di lisensikan di bawah Creative Commons Attribution-ShareAlike 4.0 International License.