KOMBINASI INERTIA WEIGHT DAN CONSTRICTION FACTOR PADA PARTICLE SWARM OPTIMIZATION SEBAGAI SOLUSI PEMBANGKITAN EKONOMIS PADA SISTEM TENAGA IEEE 26 BUS

Sabhan Kanata

Abstract


Komponen biaya paling besar pada operasi pembangkitan thermal adalah biaya bahan bakar.Untuk membuat biaya komsumsi bahan bakar generator atau biaya operasi dari keseluruhan sistem seminimal mungkin dengan menentukan kombinasi daya output dari masing-masing unit pembangkit di bawah kekangan dari tuntutan beban sistem dan batas kemampuan pembangkitan masing-masing unit pembangkit dikenal dengan istilah economic dispatch. Dalam penelitian ini, dilakukan 2 pendekatan yaitu Constriction Factor based Particle Swarm Optimization (CFBPSO) dan kombinasi inertia weight dengan contriction factor(IWCFPSO).  Pendekatan ini diterapkan dalam kasus sistem tenaga yaitu pada kasus IEEE 26 bus dengan pembebanan 1.263 MW dimana pendekatan CFBPSO danIWCFPSO menunjukkan hasil yang lebih optimal dibanding metode Improved Particle Swarm Optimization (IPSO), Newton Raphson(NR), dan Genetic Algorithm (GA) namun metode IWCFPSO mampu memberikan solusi lebih cepat dibandingkan dengan metode CFBPSO.

Full Text:

PDF

References


Jizhong, Optimization of Power System Operation, Principal Engineer, AREVA T & D Inc. Redmond, WA, USA, IEEE series of Power Engineering, Copyright 2009.2

Liang, Z.X., Glover, J.D., A Zoom Feature For a Dynamic Programming Solution to Economic Dispatch Including Transmission Losses, IEEE Transactions on Power Sistems, 1992.4

Saadat, H., Power System Analysis, Tata McGraw Hill Publishing Company, New Delhi, 2001.3

Khare, A., Rangnekar, S., Particle Swarm Optimization : A Review, Department of Energy, Maulana Azad National Institute of Technology, Bhopal 462051, India.21

Hardiansyah, Junaidi, dan Yohannes, M.S., Solving Economic Load Dispatch Problem Using Particle Swarm Optimization Technigue, I.J Intelligent Sistem and Application, 12-18, 2012.5

Mohatram, M., Kumar, S., Application of Artificial Neural Network in Economic Generation Scheduling of Thermal Power Plants, Proceedings of the National Conference, 2006.8

Sudhakaran, M., Ajay, P., Vimal R.D., dan Palanivelu, T., Application of Particle Swarm Optimization for Economic Load Dispatch Problem, International Conference on Intelligent Sistem Application to Power Sistem, Taiwan, Nov. 4-8 2007.6

Adrianti, Penjadwalan Ekonomis Pembangkit Thermal dengan Memperhitungkan Rugi-rugi Saluran Transmisi Menggunakan Metode Algoritma Genetik, Jurusan Teknik Elektro, Fakultas Teknik, Universitas Andalas, TeknikA, no 33 vol. 1, Apr. 2010.7

Gaing, Z., Particle Swarm Optimization to Solving The Economic Dispatch considering the generator constraints, IEEE Transaction on Power System, Vol. 18, No. 3, August 2003.9

Young, S., Montakhab, M., dan Nouri, H., A Constriction Factors Based Particle Optimization Algorithm to Solve The Economic Dispatch Problem Including Losses, International Journal of Innovations in Energy Sistem and Power, Vol. 6, No. 1, July 2011.10

Bai, Q., Analysis of Particle Swarm Optimization Algorithm, Computer and Informatic Science Journal, Vol. 3 No 1, Feb. 2010.14

Shi, Y., Eberhart, R.C., Particle Swarm Optimization: Development, Applications, and Resources, Proceedings of the 2001 Congress on Evolutionary Computation, 2001. 16

Shi, Y., Eberhart, R., A Modified Particle Swarm Optmizer, Proc. IEEE Int. Conf. Evol. Comput, pp 69-73, May 1998.17

Clerc, M., The Swarm and The Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization, Proc. 1999 Congress on Evolutionary Computation, Washington, pp. 1951-1957, IEEE Service Centre, 1999.

Eberhart, R.C., Shi, Y., Comparing Inertia Weight and Constriction Factors in Particle Swarm Optimization, Proceding of the 2000 Congress on Evolutionary Computation, Vol. 1, ,pp. 84-88 , 2000.


Refbacks

  • There are currently no refbacks.