
    

 

 

 

 

 

Third Version of Weak Orlicz–Morrey Spaces 

and Its Inclusion Properties  

 

    

 

Orlicz–Morrey spaces are generalizations of Orlicz spaces and 

Morrey spaces which were first introduced by Nakai. There 

are three versions of Orlicz–Morrey spaces. In this article, 

we  discussed  the  third  version  of  weak  Orlicz –Morrey 

space , which  is an enlargement  of third  version  of (strong ) 

Orlicz – Morrey  space . Similar  to its first  version  and second 

version , the  third  version  of weak  Orlicz -Morrey  space  is 

considered as a generalization of weak Orlicz spaces, weak 

Morrey spaces, and generalized  weak Morrey spaces. This 

study  investigated  some  properties  of the third  version  of 

weak  Orlicz –Morrey  spaces , especially  the  sufficient  and 

necessary  conditions  for  inclusion  relations  between  two 

these  spaces . One

 

of

 

the

 

keys

 

to

 

get

 

our

 

result

 

is

 

to

 

estimate

 
the

 
quasi- norm

 

of

 

characteristics

 

function

 

of

 

open

 

balls

 

in

 

ℝ�.
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1. INTRODUCTION 

Orlicz-Morrey spaces are generalization 

of Orlicz spaces and Morrey spaces and it is 

firstly introduced by E. Nakai in 2004 

(Maeda  et  al.,  2013 ;  Nakai ,  2008 ; Deringoz 
et al., 2015 ).   

 

These

 

 paces  are  one   of   the 

important

 

topics

 

in

 

mathematical analysis , 

particularly

 

in

 

harmonic analysis . There are 

three

 

versions

 

of Orlicz –Morrey spaces , i.e: 

Nakai ’s,

 

Sawano –Sugano –Tanaka ’s (Gala et 
al.,

 

2015 )

 

and Deringoz –Guliyev –Samko ’s (

Deringoz

 

et

 

al., 2015) versions.  

For a Young function Θ: [0,∞) → [0,∞) 
(i.e. Θ is convex, lim�→�Θ(�) = 0 = Θ(0), 
continuous and lim�→�Θ(�) = ∞), we define 

Θ��(�): = inf{� ≥ 0: Θ(�) > �}. Given two 

Young functions Θ�, Θ�, we write Θ� ≺ Θ� if 

there exists a constant  > 0 such that Θ�(�) ≤ Θ�( �) for all � > 0. 

Now, let "#  be the set of all functions $: (0,∞) → (0,∞) such that $(�) is 

decreasing but Θ��(���)$(�)�� is almost 

decreasing for all � > 0. Let $� ∈ "#&  and 

$� ∈ "#' , we denote $� ≲ $� if there exists 

a constant  > 0 such that $�(�) ≤  $�(�) 
for all � > 0. 

First we recalled definition of (strong) 

Orlicz–Morrey spaces of Deringoz–Guliyev–

Samko’s (2015) version. Let Θ be a Young 

function and $ ∈ "#, the Orlicz–Morrey 

space ℳ#,*(ℝ�) is the set of measurable 

functions + on ℝ� such that   

∥ + ∥ℳ-,.(ℝ/): = sup3∈ℝ/,45�
Θ�� 6 1|9(:, �)|;
$ 6|9(:, �)|��; ∥ + ∥<.(=)< ∞, 

where ∥ + ∥<.(=): = inf{? > 0: @=(3,4) ΘA|B(C)|D E FG ≤ 1}. 
Here, 9 ≔ 9(:, �) denotes the open ball in ℝ� centered at : ∈ ℝ� with radius � > 0, 

and |9(:, �)| for its Lebesgue measure.
 

Meanwhile, for Θ is a Young function 

and $ ∈ "#, the weak Orlicz–Morrey space
 

Iℳ#,*(ℝ�) is the set of all measurable 

functions + on ℝ� such that  

∥ + ∥Jℳ-,.(ℝ/): = sup3∈ℝ/,45�
Θ�� 6 1|9(:, �)|;
$ 6|9(:, �)|��; ∥ + ∥J<.(=)< ∞, 

where 

∥ + ∥J<.(=): = inf K? > 0: sup�5�Φ(�) MKG ∈ 9: |+(G)|? > �NM ≤ 1N. 

The space Iℳ#,*(ℝ�) is quasi-Banach 

spaces equipped with the quasi-norm ∥⋅∥Jℳ-,.(ℝ/). Note that, analog with 

ℳ#,*(ℝ�) space, Iℳ#,*(ℝ�) also covers 

many classical spaces, which shown in the 

following example. 

Example 1.1 Let 1 ≤ Q ≤ R < ∞, S be a 

Young function, and $ ∈ "# then we obtain: 

1. If Θ(�):= �T and $(�):= �U/V , then Iℳ#,*(ℝ�) = IWT(ℝ�) is weak 

Lebesgue space. 

2.  If Θ(�): = �X  and $(�): = �U/V , then Iℳ#,*(ℝ�) = IℳTX(ℝ�) is classical 

weak Morrey space. 

3. If Θ(�):= �T, then Iℳ#,*(ℝ�) =
Iℳ#T(ℝ�) is generalized weak Morrey 

space. 

4.  If $(�): = Θ��(���), then Iℳ#,*(ℝ�) =IW*(ℝ�) is weak Orlicz space.  

 Moreover, the relationship between ℳ#,*(ℝ�) space and Iℳ#,*(ℝ�) space can 

be stated as the following lemma. 

Lemma 1.2  Let Y be a Young function and $ ∈ "#. Then ℳ#,Z(ℝ�) ⊆ Iℳ#,Z(ℝ�) with ∥ + ∥Jℳ-,\(ℝ/)≤∥ + ∥ℳ-,\(ℝ/) 
for every + ∈ ℳ#,Z(ℝ�).  

 Many authors have been culminating 

important observations about inclusion 

properties of function spaces, see (Jiménez-

Vargas et al., 2018; Maligranda and 

Matsuoka, 2015; Masta et al., 2018; Masta, 

2018; Taqiyuddin and Masta, 2018; Diening, 

and Růžička, 2007), etc. Reports in literature
(Masta et al., 2018) obtained sufficient and
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necessary conditions for inclusion of strong 

Orlicz–Morrey spaces of all versions. In the 

same  paper ,  Masta  et  al.  (2017) also proved 

the

 

sufficient and necessary conditions  for 

inclusion  properties  of weak  Orlicz –Morrey 

spaces  of  Nakai ’s  and  Sawano –Sugano –

Tanaka’s versions.  

In this paper, we would like to obtain 

the inclusion properties of weak Orlicz–

Morrey space Iℳ#,*(ℝ�) of Deringoz–

Guliyev–Samko’s version, and compare it 

with the result for Nakai’s and Sawano-

Sugano-Tanaka’s versions. 

2. METHODS 

To obtain the sufficient and necessary 

conditions for inclusion properties of ℳ#,*(ℝ�), we used the similar methods in 

(Gunawan  et al., 2017 , 2018 ; Masta et al., 

2018 ;

 

Masta , 2018 ; Osançlıol , 2014 ), which 

pay

 

attention to the characteristic functions 

of

 

open balls in ℝ�, in the following lemma. 

Lemma 1.3  (Guliyev et al., 2017) Let Y be a 

Young function, $ ∈"#, and �� >0, then 

there exists a constant  > 0 such that   
�

#(4]) ≤∥ ^=(�,4]) ∥ℳ-,.(ℝ/)≤ _
#(4]). 

For weak Orlicz–Morrey spaces, we 

have the following lemma. 

Lemma 1.4  Let Y be a Young function, $ ∈"#, and �� > 0, then there exists a constant  > 0 such that   �
#(4]) ≤∥ ^=(�,4]) ∥Jℳ-,.(ℝ/)≤ _

#(4]). 

Proof. Since Θ is a Young function and $ ∈ "#, by Lemmas 1.2 and 1.3, we have  

∥ ^=(�,4]) ∥Jℳ-,.(ℝ/)≤∥ ^=(�,4]) ∥ℳ-,.(ℝ/) 

           ≤ _
#(4]). 

On the other hand, 
 

∥ ^=(�,4]) ∥Jℳ-,.(ℝ/)= sup3∈ℝ/,45�
Θ�� 6 1|9(:, �)|;
$(|9(:, �)|) ∥ ^=(�,4]) ∥J<`(a,b) 

 
= sup3∈ℝ/,45�

*U&A &
|`(a,b)|E

#(|=(3,4)|&/)
�

*U&( |`(a,b)|
|`(a,b)∩`(],b])|) 

 ≥ �
#(4]). 

Consequently, we have �
#(4]) ≤∥ ^=(�,4]) ∥Jℳ-,.(ℝ/)≤ _

#(4]). 

In this paper, the letter   was used for 

constants that may change from line to line, 

while constants with subscripts, such as  �,  �, do not change in different lines. 

3. RESULTS AND DISCUSSION 

First, we reproved sufficient and 

necessary conditions for inclusion properties 

of Orlicz–Morrey space ℳ#,*(ℝ�) in the 

following theorem. 

Teorema 2.1  (Masta et al., 2018) Let Y�, Y� be Young functions such that Y� ≺Y�, Y��� ≲ Y���, $� ∈ "#&  and $� ∈ "#' . 

Then the following statements are 

equivalent: 

(1) $� ≲ $�. 

(2) ℳ#',*'(ℝ�) ⊆ ℳ#&,*&(ℝ�). 
(3) There exists a constant  > 0 such that  ∥ + ∥ℳ-&,.&(ℝ/)≤  ∥ + ∥ℳ-',.'(ℝ/) 

for every + ∈ ℳ#',*'(ℝ�).  
Proof. Assume that (1) holds and let + ∈ℳ#',*'(ℝ�). Since Θ� ≺ Θ�, by using similar 

arguments in the proof of Corollary 2.3 in 

(Masta et al., 2016), we have 

∥ + ∥<.&(=(3,4))≤  ∥ + ∥<.'(=(3,4)) 
for every 9(:, �) ⊆ ℝ�. 

Knowing that, Θ��� ≲ Θ��� and $� ≲ $� 

(i.e. there exists constant  �,  � > 0 such 

that Θ���(�) ≤  �Θ���(�) and $�(�) ≤ �$�(�) for every � > 0), we obtain  

∥ + ∥ℳ-&,.&(ℝ/):= sup3∈ℝ/ ,45�
Θ��� 6 1|9(:, �)|;
$� 6|9(:, �)|��;

∥ + ∥<.&(=(3,4)) 

 ≤ sup3∈ℝ/,45�
_*&U&A &

|`(a,b)|E
#&d|=(3,4)|&/e

∥ + ∥<.'(=(3,4)) 

 ≤ sup3∈ℝ/,45�
__&*'U&A &

|`(a,b)|E
#&(|=(3,4)|&/)

∥ + ∥<.'(=(3,4)) 
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 ≤ sup3∈ℝ/,45�
__&_'*'U&( &

|`(a,b)|)
#'d|=(3,4)|&/e

∥ + ∥<.'(=(3,4)) 

 : =   � � ∥ + ∥ℳ-',.'(ℝ/). 

This proves that ℳ#' ,*'(ℝ�) ⊆
ℳ#&,*&(ℝ�). 

Next, since (ℳ#',*'(ℝ�),ℳ#&,*&(ℝ�)) 
is a Banach  pair, it follows  from Lemma  3.3  

that  (2) and  (3) are  equivalent . It  thus 

remains to show that (3) implies (1). 

Assuming that (3) holds. Let �� > 0 and 

adding Lemma 1.3, we have  

 1

$�(��) ≤∥ ^=(�,4]) ∥ℳ-&,.&(ℝ/)≤  ∥ ^=(�,4]) ∥ℳ-',.'(ℝ/)≤  
$�(��), 

Since �� > 0 is arbitrary, we conclude that $�(�) ≤  $�(�) for every � > 0.  

Now we come to the inclusion property 

of weak Orlicz–Morrey spaces Iℳ#& ,*&(ℝ�) 
and Iℳ#',*'(ℝ�) with respect to Young 

functions Θ�, Θ� and parameters $�, $�.  

Teorema 2.2  Let Y�, Y� be Young 

functions such that Y� ≺ Y�, Y��� ≲ Y���, $� ∈ "#&  and $� ∈ "#' . Then the following 

statements are equivalent: 

(1) $� ≲ $�. 

(2) Iℳ#',*'(ℝ�) ⊆ Iℳ#&,*&(ℝ�). 
(3) There exists a constant  > 0 such that ∥ + ∥Jℳ-&,.&(ℝ/)≤  ∥ + ∥Jℳ-',.'(ℝ/) 

for every + ∈ Iℳ#' ,*'(ℝ�).  
Proof. Assume that (1) holds and let + ∈Iℳ#',*'(ℝ�). Since Θ� ≺ Θ�, by using 

similar arguments in the proof of Theorem 

3.3 in Masta et al., 2016, we have  ∥ + ∥J<.&(=(3,4))≤  ∥ + ∥J<.'(=(3,4)) 
for every 9(:, �) ⊆ ℝ�. 

Knowing that, Θ��� ≲ Θ��� and $� ≲ $� 

(i.e there exists constant  �,  � > 0 such 

that Θ���(�) ≤  �Θ���(�) and $�(�) ≤ �$�(�) for every � > 0), we obtain  

∥ + ∥Jℳ-&,.&(ℝ/):= sup3∈ℝ/ ,45�
Θ��� 6 1|9(:, �)|;
$� 6|9(:, �)|��;

∥ + ∥J<.&(=(3,4)) 

 ≤ sup3∈ℝ/,45�
_*&U&A &

|`(a,b)|E
#&d|=(3,4)|&/e

∥ + ∥J<.'(=(3,4)) 

 ≤ sup3∈ℝ/,45�
__&*'U&A &

|`(a,b)|E
#&d|=(3,4)|&/e

∥ + ∥J<.'(=(3,4)) 

 ≤ sup3∈ℝ/,45�
__&_'*'U&A &

|`(a,b)|E
#'d|=(3,4)|&/e

∥ + ∥J<.'(=(3,4)) 

 : =   � � ∥ + ∥Jℳ-',.'(ℝ/). 

This proves that Iℳ#',*'(ℝ�) ⊆
Iℳ#&,*&(ℝ�). 

As a corollary of the Open Mapping 

Theorem (Appendix G in Grafakos et al., 

2019), we are aware that Chapter I, Lemma 

3.3 still holds for quasi-Banach spaces, and 

so (2) and (3) are equivalent. 

Now, assume that (3) holds. Let �� > 0. 

By Lemma 1.4, we have  

1
$�(��) ≤∥ ^=(�,4]) ∥Jℳ-&,.&(ℝ/)≤  ∥ ^=(�,4]) ∥Jℳ-',.'(ℝ/)≤  

$�(��), 

Since �� > 0 is arbitrary, we conclude that $�(�) ≤  $�(�) for every � > 0.  

For generalized weak Morrey spaces, 

we have the following corollary. 

Corollary 2.3 Let 1 ≤ Q < ∞, $� ∈ "#&  and 

$� ∈ "#' . Then the following statements are 

equivalent: 

(1) $� ≲ $�. 

(2) Iℳ#'
T (ℝ�) ⊆ Iℳ#&

T (ℝ�). 
(3) There exists a constant  > 0 such that ∥ + ∥Jℳ-&

V (ℝ/)≤  ∥ + ∥Jℳ-'
V (ℝ/) 

for every + ∈ Iℳ#'
T (ℝ�). 

We have shown the sufficient and 

necessary conditions for the inclusion 

relation between weak Orlicz–Morrey space Iℳ#,*(ℝ�). In the proof of the inclusion 

property, we used the norm of characteristic 

function on ℝ�. The inclusion properties of 
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weak Orlicz-Morrey space Iℳ#,*(ℝ�) 
(Theorem 2.2) and weak Orlicz–Morrey 

space Iℳf,g(ℝ�) of Sawano–Sugano–

Tanaka ’s version  (Theorem  3.9 in previous 
report  (Masta  et al., 2018)) generalized  the 

inclusion properties of weak Morrey spaces 

and  resulted  weak  Morrey  spaces  in 
literature  (Masta    et al.,      2017 a;   2017 b ).

   Meanwhile ,    the  inclusion  properties  of  weak

 Orlicz -Morrey  space  IWh,i(ℝ�)  of  
Nakai’s  version  (Theorem 3.4  in  literature
(Masta et al., 2018) generalized the unique 

inclusion properties of weak Orlicz spaces in 
other report (Masta et al., 2016).

 

Comparing Theorem 2.2 and Theorem 

3.9 in Masta  et al. (2018 ), we  say  that  the 

condition  on the  Young  function  for  the 

inclusion of the weak Orlicz–Morrey space Iℳf,g(ℝ�) is simpler than that for the 

weak Orlicz–Morrey space Iℳ#,*(ℝ�).
 

As a corollary of Lemma 1.2, Theorem 

2.1 and Theorem 2.2, we also have the 

following inclusion relations  

 

ℳ#' ,*' → ℳ#& ,*&↓ ↘ ↓Iℳ#' ,*' → Iℳ#& ,*&
 

for Θ� ≺ Θ�, Θ��� ≲ Θ��� and $� ≲ $�, where 

the arrows mean ‘contained in’ or 

‘embedded into’.  

4. CONCLUSION 

This article has discussed the third 

version of weak Orlicz–Morrey space, which 

is an enlargement of third version of 

(strong) Orlicz–Morrey space. This study also 

investigated some properties of the third 

version of weak Orlicz–Morrey spaces, 

especially the sufficient and necessary 

conditions for inclusion relations between 

two these spaces. One of the keys to get our 

result is to estimate the quasi-norm of 

characteristics function of open balls in ℝ�. 
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