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The process control in the sludge dewatering process is to 
minimalize the water volume in the sludge. However, 
management of this process control is difficult because of its 
multi-variables, nonlinearity and long delay. In this paper, a 
control approach based on the principal component analysis 
(PCA) is presented. A PCA model, which incorporates time 
lagged variables is used. The control objective is expressed in 
the score space of this PCA model. A controller is designed in 
the model predictive control framework, and it is used to 
control the equivalent score space representation of the 
process. The score predictive model for the model predictive 
control algorithm is built using a partial least squares (PLS). 
The process control system with PLS was simulated on 
Matlab and the graphs showed good accuracy and stability. 
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1. INTRODUCTION 

Sludge a dewatering process is a 
nonlinear process with a long delay. 
Producing the sludge with high dryness 
content is an important process control 
objective. The sufficient dryness content of 
the sludge dewatering process is often to be 
not satisfactory due to the technical 
limitations of the available centrifuge used 
in the on-line sludge dewatering process. 
Moreover, there are many parameters that 
have to be observed such as flow rate of the 
sludge, flow rate of the polymer, dry solids 
in supply, temperature, solid content 
(centrate), sludge cake dryness, differential 
speed of the centrifuge, and the screw 
torque of the centrifuge. 

To solve this problem, many approaches 
have been studied from many researches 
which have similar basic principle of the 
process. Thyagarajan et al. presents an 
application of artificial neural network 
(ANN) technique to develop a model 
representing the nonlinear drying process. 
(Thyagarajan et al., 1997) Trelea et al. 
presented a simple nonlinear process 
predictive optimal control algorithm for on-
line control of a batch drying process. 
(Trelea et al., 1997) Suykens et al. presented 
weighted least square support vector 
machine. (Suykens et al., 2002) Turovskiy et 
al. presented the waste water sludge 
processing. (Turovskiy et al., 2006)  

In this paper, we a proposed a new 
approach for a process control conditon for 
using when accurate moisture 
measurements are not available on-line or 
have a long time delays. The key aspects of 
this controller are as follows:  

(1) A PCA model that uses time – lagged 
data. The scores calculated from this 
model are fed as inputs to a score 
predictive model which is developed 
using a partial least square (PLS).  

(2) The predicted scores are used as key 
indicators of the process performance 
based on the assumption of an implicit 
correlation between available 
measurements used to calculate the 
scores and the cake dryness variables.  

(3) The control objective is that used to 
maintain the predicted score variables 
within a certain acceptable region 
defined from historical data. This 
controller is developed and 
implemented on top of an existing plant-
wide conventional PID control system. 
Manipulated variables for the proposed 
controller are selected in the set points 
of existing control loops. Other issues 
(i.e. maintaining the correlation 
structure of the input variables when 
implementing the controller) we also 
discussed. In the following sections, the 
methods used in this paper are briefly 
reviewed, and the design of the control 
system is presented. The final section 
draws conclusions regarding this study. 

 

2. METHOD 
2.1. Principal Component Analysis (PCA) 

Originally principal component analysis 
or PCA was developed by Pearson in 1901. 
PCA is a method for analyzing the 
covariance of a data set of plant variables. 
The approach transforms a matrix 
containing measurements from n process 
variables, X, into a matrix of mutually 
uncorrelated variables. These variables 
(called principal components (PC)) are 
transformed from the original data into a 
new basis defined by a set of orthogonal 
loading vectors, pk. The individual values of 
the principal components are called scores. 
This transformation is determined as 
follows: 

   (1) 
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The loadings are defined here as being 
orthonormal, and so they become the 
eigenvectors of the data covariance matrix, 
XTX. The tk and pk pairs are ordered so that 
the first pair captures the largest amount of 
variation in the data and the last pair 
captures the least. In this way, it is generally 
found that a small number of PCs (np) can 
account for much of the power in the 
covariance matrix. The remaining power 
constitutes the error term E. When Eq.(1) is 
applied to a single vector of new process 
measurements, XT, the resulting term E is 
called the prediction error.  

 
2.2. Partial Least Square (PLS) 

PLS regression is a recent technique that 
generalizes and combines features from 
principal component analysis and multiple 
regressions. It is particularly useful when we 
need to predict a set of dependent variables 
from a (very) large set of independent 

variables (i.e., predictors). It originated in 
the social sciences (specifically economy) 
but became popular in chemometrics (i.e., 
computational chemistry) due in part to 
Herman’s son Wvante, (Geladi & Kowalski, 
1986)) and in sensory evaluation (Martens & 
Naes, 1989). But, PLS regression is also 
becoming a tool of choice in the social 
sciences as a multivariate technique for non-
experimental and experimental data alike 
(e.g., neuroimaging (Mcintosh et al., 1996)). 
It was first presented as an algorithm akin to 
the power method (used for computing 
eigenvectors) but was rapidly interpreted in 
a statistical framework. 

The goal of PLS regression is to predict Y 
from X and to describe their common 
structure. To prerequisite notions and 
notations, the I observations described by K 
dependent variables are stored in the I × K 
matrix denoted Y. The values of J predictors 
collected on these I observations are 

Figure 1. The block scheme of the Sludge Dewatering Process. 
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collected in the I × J matrix denoted X. 
When Y is a vector and X is full rank, this 
goal could be accomplished using ORDINARY 
MULTIPLE REGRESSION. When the number 
of predictors large compared to the number 
of observations, X is likely to be singular, 
and the regression approach is no longer 
feasible because of MULTICOLINEARITY. 
Several approaches have been developed to 
cope with this problem. One approach is to 
eliminate some predictors (e.g., using step-
wise methods) of another one, called 
principal component regression. This is to 
perform PRINCIPAL COMPONENT ANALYSIS 
(PCA) of the X matrix and then is used the 
principal components of X as regressors on 
Y. The orthogonality of the principal 
components eliminates the multicolinearity 
problem. But, the problem of choosing an 
optimum subset of predictors remains. A 
possible strategy is to keep only a few of the 
first components. But they are chosen to 
explain X rather than Y. Indeed, nothing 
guarantees that the principal components 
(which “explain” X) are relevant for Y. 

In contrast to the above exploration, PLS 
regression finds components from X that is 
also relevant for Y. Specifically, PLS 
regression searches for a set of components 
(called latent vectors). It that performs a 
simultaneous decomposition of X and Y with 
the constraint, in which these components 
explain as much as possible of the 
covariance between X and Y. This step 
generalizes PCA. It is followed by a 
regression step where the decomposition of 
X is used to predict Y. 

The approach is worked by selecting 
factors of cause variables in a sequence 
which successively maximize the explained 
covariance between the cause and effect 
variable. A matrix of cause data given, X, 
and the effect data, Y, a factor of the cause 
data, t1, and the effect data, u1, is evaluated 
by

where E and F are the residual matrices and 
np is the number of inner components that 
are used in the model. 

These equations are referred as the 
outer relationships. The vectors th are 
mutually orthogonal. These vectors and uh 
are selected so as to maximize the 
covariance between each pair, (th, uh). 
Linear regression is performed between th 
and uh, to produce the inner relationship 
the correlation can be written as: 

  (2) 

where bh is a regression coefficient and h 
refers to the prediction error. The PLS 
method provides the potential for a 
regularized model through selecting an 
appropriate number of latent variables, uh in 
the model (np) (Geladi & Kowalski, 1986). 
More concepts of least square estimation 
for the static systems identification is 
explained by Stigter. (Stigter, 2011) 
 
2.3. Design of a process controller 

Since the variables of sludge dewatering 
process are almost never independent one 
to another, the true dimension of the space 
can be described as the process moves is 
usually very much smaller than the number 
of measured variables. As a result, many of 
the measured variables move together 
because of a few underlying fundamental 
events indeed, affects this the entire 
process and leads to the latent variable 
approach used. The sludge dewatering 
process scheme is shown in Figure 2. 

 In order to design a process control of 
the sludge dewatering process, the process 
definition has to be determined. The control 
goals are to determine the static model of 
the sludge dewatering process to make this 
process can run at its absolute best 
condition and to optimize the parameters 
that are running at various condition (i.e. 
the sludge feed rate, the polymer dosing, 
the sludge cake dryness, and the low 
concentrate). Increasing the dry solid 
recovery means reducing the recycle load as 
well as saving the energy or money. The 
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sludge dewatering process parameters are 
defined on Table 1. 

Three abbreviations used in the process 
controller are (i) MV (Manipulated Variable) 
for a process input that can be 
independently set by the controller, (ii) DV 
(Disturbance Variable) for a measurable 
process input that affects the process 
outputs, (but cannot be set by the 
controller), and (iii)CV (Controlled Variable) 
for a process output controlled by the 
control. 

3. RESULTS AND DISCUSSION 
Assume that there is a linear relationship 

between parameters. However, since the 
dewatering sludge process is a dynamic 
process, thus non-linearity should take into 
account. If there is no non-linearity, then a 
good prediction from the PLS will be 
sufficient as long as the chosen parameters 
are correct. These are the assumptions 
before doing the modeling in order to help 
us making a good predictor. 

 
 

 
 

 
 

 
 
 

Figure 2 The scheme of the sludge dewatering process. 



66 | Indonesian Journal of Science & Technology, Volume 1 Issue 1, April 2016 Hal 61-73 
 

DOI: http://dx.doi.org/10.17509/ijost.v1i1  

p- ISSN 2528-1410 e- ISSN 2527-8045 

 
 

 
 

The static model for determining the 
relationship between the parameters is 
shown on Table 2 based on four input 
parameters. From the above table, there is a 
correlation between parameters because of 
several reasons: (1) the original data is so 
poor, and (2) there is a nonlinearity factor. 
Thus, we need to put more parameters such 
as torque, differential speed, seasonal 
situation, sludge characteristic, concentrate, 
temperature, and SVI. On this research, only 
temperature, SVI, and concentrate are 
added because of technical limitation to get 

the data of additional parameters. By 
analyzing 5 input parameters and 1 output 
parameter, the static model is shown on 
Table 3. 

From Table 3, the most important 
parameters which have a strong relationship 
are found. The important parameters are 
dry solids in supply, concentrate, 
temperature, and cake dryness. Figures 3 
and 4 show the principal component 
analysis related to the variance of 5 inputs 
variables and the Pareto function explaining 
2/3 of the total variance respectively.

 
 
 
 

Table 1. The process parameters for the process controller 
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Choosing the number of components in 
the PLS model is a critical step. The graft in 
Figure 4 gives a rough indication, showing 
around 40% of the variance explained by 
the first component, with as many as the 
second and third components making 
significant contributions reaching 80% of 
the variance. By using the partial least 
square method, the data cloud is built. The 
data cloud describing the data distribution 
according to the relationship between each 
parameter is presented on Figure 5. As a 
remark from this Figure, Flow rate Sludge2 

and Flow rate PE2 have a similar character 
as well as Temperature and Dry solids in 
supply. These parameters are connected 
strongly as the cause variables for the 
output that is Concentrate as the effect 
variable. So that, these parameters are 
observed on partial least square modeling 
that can be seen on Figure 6 showing a 
reasonable correlation between fitted and 
observed responses, and this is confirmed 
by the R2 statistic (that is R squared = 
0.6788). 

 

Table 2. The static model of 4 inputs parameters 

Table 3. The static model of 5 input parameters and 1 output parameter 
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Figure 3. The principle component analysis relating to the five input variables 

Figure 4. Principle components and percentage of variance 

Explained.
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After doing the partial least square 
modeling, a plot of the weight of five 

predictors in each three components shows 
that two of the components (the blue and 

Figure 5. The data cloud of five input parameters. 

Figure 6. The partial least square modeling. 
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green lines) explain the majority of the 
variance in the cause of the process. It can 
be seen from Figure 7 that the two lines 
stick to close with a little difference around 
0.05 in weight. Thus, a plot of the mean-
squared errors can be done. 

From Figure 8, it can be seen that the 
blue line is the MSE Predictors and the 
green line is the MSE Response. The plot of 
the Mean-Squared Errors (MSE) suggests 
that as few as two components may 
provide an adequate model. The error for 
the response is lower than the predictor. 

From Figure 9 and Figure 10, some 
remarks have been found. First, for the 
Predicted Model versus the Training Data, 
the error square value (R2) is 0.4087 and the 
mean-squared error (MSE) is 1.0398e-015; 
for the Predicted Model versus the 
Validation Data, the error square value (R2) 

is 0.5709 and the mean-squared error 
(MSE) is 0.0402. Thus, the Predicted Model 
fulfills the research objective sufficiently 
with a small error. 

Secondly, there is the same trend for all 
data samples. The trend is that the 
Modeled is always trying to follow the 
training data. Secondly, for the Data 
Training on higher points of Dry Solids in 
centrifuge effluent, the Model cannot fit 
these points. The same response also 
happens when the Data Training on lower 
points. This phenomenon explains that 
there is another factor effecting on this 
process. This factor does not take into 
account on this paper. Probably, this 
happens because of a nonlinearity factor, 
which can not deal robustly with PLS 
method. 

 
 
 

 
 

 
 

Figure 7. The weight contribution of variables. 
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Figure 8. The graph of MSE predictors and MSE response. 

Figure 9. Predicted model versus the training data. 



72 | Indonesian Journal of Science & Technology, Volume 1 Issue 1, April 2016 Hal 61-73 
 

DOI: http://dx.doi.org/10.17509/ijost.v1i1  

p- ISSN 2528-1410 e- ISSN 2527-8045 

 
 

 
 

 
 
4. CONCLUSIONS  

Based on the above results, the 
conclusions are derived. Firstly, the principal 
component analysis (PCA) and partial least 
square (PLS) method have been successfully 
applied to real application performance 
modeling considered as a static modeling. 
This study applied PCA to analyze covariance 
of the data set of the sludge dewatering 
process. The parameters have the strong 
correlation to the result of the sludge 
dewatering process. The parameter are Dry 
solids in supply, Cake dryness, Temperature, 
and Concentrate. PLS method is applied to 
predict the model of the effect data set from 
the cause data set and to describe their 
common structure. The fixed size PLS with 
two components may provide a good model. 
The simulation results using the training 
data indicated that the model can fit the 
data in the range around 28% – 30% dry 
solid in centrifuge effluent. The same result 

has been determined on the simulation of 
the predicted model with the validation 
data. Thus, the simulation results presented 
that using PCA and PLS method are good for 
static system identification. Partial least 
square estimation is a reasonable way to 
estimate the unknowns from given data by 
calculating the prediction errors or residuals 
which are small. Lastly, use another 
approach such as LSSVM (Least Square 
Support Vector Machines) to improve the 
accuracy and robustness. 
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