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The effect of surfactant on the thickness of a thin film 
bounded by a solid surface and a moving liquid drop was 
investigated. We proposed a model so that parameters from 
the liquid drop can be stated in a parameter that acts as 
normal pressure to the thin film. Using the lubrication 
approximation, the model was reduced to a set of nonlinear 
partial differential equations in terms of the film thickness 
and surfactant concentration. Since we were interested in 
the role of the surfactant in lifting up the drop, we assumed 
that the density of the drop is higher than the density of the 
thin film. Numerically, the results show that the presence of 
the surfactant tends to delay the decrease of the film 
thickness insignificantly. However, when the surfactant was 
added into the system, it tends to significantly increase the 
film thickness for a certain range value of the normal 
pressure.  
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1. INTRODUCTION 

In this paper, the effect of surfactant on 
the heights of the thin film bounded by a 
solid surface and a moving liquid drop is 
examined. The dynamics of the thin film is a 

main issue in the wetting of the surface by a 
liquid drop. Under some conditions, it was 
possible for a drop to approach a solid 
surface and then remain in a stable steady 
state separated from the surface by an ultra-
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thin film, or rupture spontaneously and 
permit wetting of the surface by the drop. 
The problem can be observed in many 
industrial applications. As an example, in the 
petroleum industry, surfactants are 
commonly used to increase oil production 
from a reservoir by reducing the interfacial 
tension between oil and water (Zhang et al., 
2006; Lai et al., 2010; Schwartz et al., 1995), 
and/or alternating the wettability of rocks  
(Zhang et al., 2006). Oil can release water-
wet rocks surface more easily than oil-wet 
surface. In a case where the oil drop has 
detached from the rocks surface, the 
problem is whether the drop will or will not 
adhere back to the surface of rocks. 
Understanding this issue is important 
because getting back the oil drop to the rock 
surface is undesirable due to the need of 
increasing the oil production.  

The effect of surfactant on the 
evolution of liquid thin film in various 
situations and with various parameters has 
been extensively studied by previous 
researchers. The presence of surfactant on 
the thin film bounded by a solid and gas was 
analyzed by De Wit et al. (1994), Schwartz et 
al. (1995), Schwartz, et. al. (1996), Danov et 
al. (1998), Rubinstein & Leshansky (2000), 
Pereira et al. (2007). A thin film bounded by 
a thick fluid layer containing surfactant was 
examined by Sharma & Ruckenstein (1986). 
The surfactant and the thin film formed 
between two liquid drops were studied by 
Duineveld (1996), Chester & Bazhlekov 
(2000). In general, the surfactant can reduce 
the surface tension that results in the 
Marangoni effect. Depending on the 
particular physical situation, the Marangoni 
effect can either stabilize or destabilize the 
thin film.  

The derivation of the governing 
equations of the thin film can be found in 
many papers, such as Oron (1997), Myers 
(1998), O’Brien & Schwartz (2002), and 
Craster & Matar (2009). The governing 

equations consist of the Navier-Stokes 
equations and the continuity equation. The 
lubrication theory is then applied. In 
general, the derived models consist of a set 
of the fourth order nonlinear partial 
differential equations. For a thin film that is 
bounded by a solid substrate and a second 
fluid phase, the dynamics of the second fluid 
becomes involved; thus, the Stokes Equation 
has to be solved in two domains  (Sharma  & 
Ruckenstein , 1986 ; Yiantsios  & Higgins , 
1989; Fisher & Golovin, 2005). 

In the present study, we proposed an 
approach in order to simplify the evolution 
system of two-phase thin film. We 
considered that the liquid drop as a second-
phase fluid moved downward to the 
substrate with much slower velocity than its 
translational velocity, i.e. the velocity of the 
drop in unbounded domain. We defined the 
velocity of the drop. The viscosity and 
density of the drop are accommodated in 
the introduced velocity. This new approach 
allows us to exclude the Stokes Equation in 
the drop domain with considering the 
characteristics of the drop. The Marangoni 
effect on the dynamics of the thin film is 
then investigated. 

We also examined the case when a 
surfactant concentration is added into the 
system.  To the best of our knowledge,  
previous studies that take into account the  
additional surfactant concentration are 
limited. Danov et al. (1998) examined the 
influence of adding surfactant concentration 
to dynamics of thin film which is bounded by 
a substrate and a vapour phase. Liu et al. 
(2014) experimentally simulated the effect 
of surfactant and its additive on the vertical 
gas–liquid two-phase flow.  

2.  METHODS 

This research was conducted utilizing 
the computational fluid dynamics. This is as 
a main method in fundamental research for 
predicting local fluid dynamics (Sumarji et 
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al., 2019). The computation is based on 
governed mathematical model.  

A proposed  mathematical model for 
evolution of the thin film incorporating 
surfactant is as follows. The liquid thin film 
flowing occurs between a horizontal plane 
and a liquid drop. The drop is nearly 
spherical with density ˆ ,  and viscosity ̂ . 
Meanwhile, the thin film has density   and 
viscosity  . Let a  be the radius of the area 
to which the lubrication theory is applied, 
and let x  and y   denote the horizontal and 
the vertical coordinates, respectively. The 
thickness of thin film is denoted by ( , )h x t  
where t is the time. The illustration for such 
a situation is described in Figure 1. 

Here are assumptions: 

1. The thin film and the drop are 
incompressible viscous Newtonian fluids, 
such that the 2-D creeping flow 
approximation is eligible. 
 

2. The drop is symmetrical to the normal 
axis. 

 
3. The drop moves perpendicular to the 

horizontal smooth solid surface. When 
near to the solid surface, the drop's 
velocity is much slower than when it is 
far away from the solid surface (it is 
explained later on). 

 
4. Surfactant is insoluble and distributed at 

the interface of the thin film-liquid drop 
by convection. 

 
5. Surfactant concentration is sufficiently 

small and only affects the drop surface 
without any complex dynamical or 
rheological effects. 

Let  ,  ,  u x y t   and  ,  ,  v x y t  be 

velocities of the thin film fluid in horizontal 
and vertical directions, respectively. Based 
on Laaraba and Khechekhouche (2018), the 
conservation of mass is reads:  

 
0.x yu v       (1) 

 

The momentum equations in lubrication 
approximation read: 

( ),x xx yyp u u    (2)

( ),y xx yyp v v   (3) 

where p  is the pressure in the thin film. 
Subscripts represent the partial derivative, 
except it is explicitly stated. 

Equations (1) – (3) are supplemented by 
the following boundary conditions: 

i. At y  = 0, no-slip conditions hold: 

       0u v   (4) 

ii. At y h , shear and normal stress 
balances are fulfilled: 

 

2 2[( )(1 ) ] 4 1y x x x x x xu v h h u h       (5) 

2

2

2

2 [ ( 1) ( )]

ˆ( )(1 )
1

x x x x y

xx
x

x

u h h v u

h
p p h

h





   

   
   

(6) 

 

where   is the surface tension and p̂   is 
the pressure of liquid drop. It was also 
assumed that the pressure variations of the 
drop are dominant in the vertical direction.  
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Thus, we set ˆ ˆ ˆyp v    where v̂  is the 
velocity of liquid drop that is moving 
normally to a solid surface. The minus sign 
denotes that the pressure acts downward. 
For the liquid drop's velocity v̂ , we 
proposed a model as follows. Far from the 
solid surface, the liquid drop, which has a 
density higher than the surrounding fluid, 
moves downward under its translational 
velocity. Based on Griggs et al. (2009), the 
translational velocity is defined by: 

2 ˆ1 2 ( )
,

3 2 3

ga
V

  
 

 



    (7) 

where ̂


   is the viscosity ratio. When 

the drop approaches the solid surface, the 
velocity decreases, and we proposed that 
the velocity v̂  is given by: 

ˆ( ) .
1

( 1)

V y
v y

H y


 

ò  

(8) 

 A sketch of the ˆ( )v y is described in Figure 2. 
The Equation (8) clarifies that the velocity of 

the drop at infinity is V  and at a certain 

height H  is Vò , where 1
H

a
 ò  . In other 

words, the velocity of the drop near the 
solid surface is smaller up to order ò than 
the translational velocity. The benefit of 
knowing the proposed velocity of the drop is 
that it is not necessary to solve the 
momentum equation in the drop domain. 
Furthermore, for the liquid drop's velocity in 
the thin film region, we then approximate 
Equation (8) as: 

2

ˆ( ) (1 ) ...
V y V y y

v y
H H H
    

ò ò
  

Therefore, the Eq. (6) becomes: 
2

2

2

2 3/2

2 ( ( 1) ( ))

(1 )

2
ˆ( (1 )).

(1 )

x x x x y

x

xx

x

u h h v u
p

h

h V V y

h H H H




  

  
  



  


ò ò  

     
(9) 

The kinematic condition at y h  is 
stated by: 

 .
st s xh u h v   (10) 

Figure 1. The thin film between a solid surface and a liquid drop. 

Figure 2. The sketch of the liquid-drop's vertical velocity. 

p- ISSN 2528-1410 | DOI: https://doi.org/10.17509/ijost.v5i1/23100 | e- ISSN 2527-8045



79 | Indonesian Journal of Science & Technology, Volume 5 Issue 1, April 2020 Hal 75-85 

 
In Equation (10), subscript s  signifies that 
the quantity is calculated at y h . The 
dynamics of surfactant at y h  is based on 
the principle of mass conservation: 

( | ) 0,t s xu           (11) 

where   is the concentration of surfactant 
at interface .y h  In Equation (11), the 
diffusion term was neglected since chemical 
diffusivity was assumed to be small. 

The surface tension variations are due 
to the change in surface concentration , 
and are assumed to follow the linear law: 

0 0( ),E        (12) 

where 0  is the surface tension 
corresponding with concentration 0   and E 
is the elasticity of the surfactant (Oron et al., 
1997). Let 0 0c E     where c   is 
called the surface pressure. Equation (12) 
can be rewritten as: 

.c E      (13) 

Equations (1) - (13) are transformed 
into dimensionless forms by scaling: 

* * * * *, ( , ) ( , ), ( , ) ( , ),x ax y h Hy Hh u v Uu Uv   ò

*( )
a

t t
U

  and *
0 ,   *,c   *,p Pp  

where
2

.
a U

P
H




 
Equations (1)-(3) become 

(after ignoring the asterisk notations): 

0x yu v     (14) 

x yyp u    (15) 

0yp    (16) 

For the boundary conditions, Equations (4) 
and (10) are still satisfied. Whereas 
Equations (9) and (5) become: 

22 1
(1 2 ),

3 3 2xx op h B h
 



    
 ò  

 (17) 

y xu M    (18) 

with the Bond number 
2ˆ( )

,o

ga
B

 



 and 

the Marangoni number 0 .
E

M
PH


  We have 

used characteristic velocity 
3

.cU




ò

 Note 

that 0oB    means the density of the liquid 
drop ( ̂ ) is higher than the density of the 
film   , and vice versa for 0.oB   For 

convenience, we write
2

3
.

4

3 2 oB
 






 Since 

we are interested in the role that surfactant 
plays in lifting up the liquid drop, for the rest 
of discussion we will take   > 0. 

The derivation for equations of 
evolution h  and   is as follows. Integrating 
Equation (16), the pressure p  is only 
dependent on x . Reconsidering this, Eq. 
(17) is valid in [0, ]h . To find the velocity in 
the thin film, Equation (15) is integrated, 
then apply Equation (4)  and condition (18). 
Hence: 

21
( )( ) .

2xxx x xu h h y hy M y        (19) 

Using Leibnitz rules, Equation (11) can 
be written: 

0t xh Q    (20) 

where 

0
 .

h
Q u dy   

(21) 

Using Equation (11) and Equations (19) - 
(21), equations for the thickness of the thin 
liquid film and the surfactant concentration 
are: 

2 31 1
0 [ ] [ ( )] ,

2 3t x x xxx x xh M h h h h     (22) 

21
0 [ ] [ ( )] .

2t x x xxx x xMh h h h       (23) 
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We noted that for  = 0, Eqs. (22) – (23) are 
similar to Schwartz et al. (1995) and 
Schwartz et al. (1996), for the process of 
levelling thin liquid films that appears 
between a solid surface and gas, under the 
influence of a surfactant. Our model,  = 0 
defines two parameters: first, the density of 
the liquid drop is equal to the density of the 
thin film or second, the viscosity of the 
liquid drop approaches zero (corresponding 
to gas). So, for  = 0 our model is in 
agreement with the works of Schwartz et al. 
(1995). 

We initially approximated the thin film 
height as a quadratic polynomial and the 
surfactant concentration is uniformly 
distributed on the interface. The quadratic 
polynomial is chosen as the initial height, 
since we assumed that the liquid drop is 
nearly spherical. The initial conditions are 
then given by: 

21( ,0)
2

( , 1

,

0) .

P
h x K x

x

 


 

We also take the boundary conditions at 
both ends of the thin liquid film: 

1( 1 ) , ,xxh t P                 (24) 

2( )( 1, ) ,xxx xh h t P                 (25) 

) ( 1, .x t C                  (26) 

Parameter 1P  in Equation (24) 
represents the pressure magnitude at the 
end of the thin film, 2P  in Equation (25) 
describes the magnitude of pressure 
difference of the thin film when the 
surfactant is not present, and C  in Equation 
(26) shows the magnitude of the adding 
rates of surfactant concentration at both 
ends of the domain.  

3. RESULTS AND DISCUSSION 

In this section, we presented numerical 
solution of the system (22)-(23) by the Finite 
Difference Method. We considered the 

computational domain [ 1, 1],x  [0, 54]t . 
Based on Nurprasetyo et al. (2017), 
selection of the mesh element size should 
be conducted carefully in order to give an 
accurate result without consuming much 
time. Here, we selected the size of mesh 

0.1x   and 53 10t    so that the 
numerical solution is stable and 
convergence. For initial and boundary 
conditions, we used parameters 0.5K  , 

1 0.2P  , and 2P = 0.1. Those values can be 
replaced by other numbers as long as the 
lubrication approximation is valid (small Ha). 

3.1. The Influence of the Surfactant 

First, we consider the evolution of the 
thin film covered by surfactant and the 
redistribution of the surfactant 
concentration. In Figure 3(a), we presented 
deformation of the thin film for 1,   

1,M   and 0.C   We assumed that initially 
the curvature of the thin film is a parabola. 
In the initial stages of deformation, the 
curvature slightly changes. As time 
progresses, the curvature is very similar as 
before. The result is in accordance with 
those reported previously by Danov et. al 
(1999) that is due to the disjoining and 
capillary pressure the film drains without 
significant change of its radius and shape of 
the interfaces. It is also in agreement with 
Pozrikidis (1990) that there is a phase where 
the bottom part of the liquid drop maintains 
a nearly spherical shape during the motion 
towards a planar substrate.  

The height of the thin film decreases 
uniformly at whole domain due to two 
parameters: first, the density of the liquid 
drop is higher than that of the thin film (

1  ), and second, a small amount of the 
fluid in the thin film is flowing out at the 
boundaries. As a result, the liquid drop 
directly moves toward the solid surface.  

The result in Figure 3(a) also 
demonstrates that the liquid drop moves 
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toward the solid surface with reduced 
velocity. This behaviour is in a good 
agreement with the results of Pozrikidis 
(1990) indicating that as the drop 
approaches the wall, it slows down. The 
solid surface serves as a barrier to the liquid 
drop to move. 

The redistribution of the surfactant 
concentration on the thin film surface is 
presented in Figure 3(b). In this simulation, 
initially the surfactant concentration is 
uniformly distributed at the interface of the 
thin-film. In other words, its gradient 
concentration is zero. As the liquid drop 
moves with a slight change in shape, the 
surfactant convects out uniformly in the 
boundaries. As a result, the gradient of the 
surfactant concentration for 0t   is almost 
zero.  

To illustrate the effect of the presence 
of surfactant, in Figure 4 we compare the 
dynamics of the thin film thickness at the 
center point (0)h , that is its lowest point,  

for M = 0 and M = 1. Here, M = 0 denotes a 
surfactant free case, and vice versa. The 
solid line is for free-surfactant and the 
dashed-line is for covered-surfactant. The 
magnitude of the thin film height hardly 
differs from the free-surfactant case. The 
presence of the surfactant insignificantly 
delays the liquid drop in moving down. This 
result occurs because the gradient of the 
surfactant concentration almost vanishes 
(see Figure 3(b)). Thus, the stress of the 
Marangoni  stress has a minor influence on 
the dynamics of the thin film. 

To justify those descriptions theoretically, 
we considered the Equation (21). The 
surfactant parameter affects the dynamics 

of the thin film in the term  21
[ ]
2 x xM h  . 

Thus, if ~ ( )x O ò  then its dynamics will be 
similar to the free-surfactant case, i.e:

31
( ) [ ( )] .

3t xxx x xh O h h h  ò  

Figure 3. The dynamics of (a) the height of the thin film, (b) the 
surfactant concentration, for 1,   
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This result is in a good agreement with 
the results of Danov et al. (1999) showing 
that when the surfactants are insoluble, 
they remain uniformly distributed 
throughout the drop surface during the film 
thinning, and interfacial tension gradients 
do not appear. As a consequence, the 
drainage of the film surfaces is not opposed 
by surface tension gradients, and the rate of 
film thinning is the same as in the case of 
pure liquid phases. The simulation is also 
similar to the result of Yulianti, et al. (2013) 
that the presence of insoluble 

surfactants  does not have a significant 
effect on liquid  drop movement.  

3.2. Effect of the Surfactant Adding Rates  

Based on the results in the previous 
subsection, we found that the presence of 
the surfactant with ~ ( )x O ò  does not have 
a significant influence on the thin film 
height. Therefore, in this subsection, we 
considered the addition of surfactant 
concentration at the boundaries in order to 
increase its gradient; i.e. ( 1, ) 0x t C     . 

Figure 5. The dynamics of thin film's height at 0x  for 1   and different C . 

Figure 4. The dynamics of the thin film at (0)h for free-surfactant (solid 
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To illustrate the effect of the surfactant 
adding rate to the height of the thin film, in 
Figure 5, we showed the dynamics of the 
thin film's height at 0x   for a constant 

1,   and different 0C  . For the case 
0C  , we already presented these results in 

Section 3.1. For the case 0C  , as the value 
of the adding rate increases, the height of 
the thin film also increases. For the case 

1,  the adding rate of surfactant can 
prevent the thinning of the film. This is 
because the adding rate of surfactant 
improves the gradient of the surfactant 
concentration, which leads to the 
Marangoni effect. For this case, the 
influence of the Marangoni effect becomes 
more important compared to the pressure 
from the Bond number. 

Next, we considered the effect of 
adding rate surfactant to the height of the 
thin film with high bond number or viscosity 
ratio.  Figure 6 presents the dynamics of thin 
film height at the center point ( 0x  ) for 
constant 3    and some 2C P . For values 
adding rate C = 0, 0.1, 0.2, the height of the 
thin film decreases monotonically. For C  = 
0.3, the height of the thin film increases for 
a moment; then, it decreases. It can be 
clearly seen that for 3  , even though the 
adding rates of surfactant is increased, the 
height of the thin film continues to 
decrease. Here, we observed that for high 
Bond number or high viscosity ratio (high 

value of  ), the adding rate of surfactant 
cannot  prevent the rupture of the thin film. 
This result aligns with the result of Chester 
& Bazhlekov (2000), indicating that by 
increasing the viscosity ratio, the effect of 
surfactant becomes weaker. 

Based on results that are presented in 
Figures 5 and 6,  there is a limitation of   
value so that the surfactant adding rates 
work effectively to lift the liquid drop.  This 
is due to the surfactant adding rates only 
working at the end points, whereas  , 
which acts according to the normal pressure 
from the liquid drop, works in the entire 
domain [ 1, 1]x  . So, the adding rates of 
the surfactant are not able to lift the heavy 
liquid drop. 

4. CONCLUSION 

This paper has presented a model and 
numerical explorations of the influence of 
the insoluble surfactant on the dynamics of 
thin film between a solid surface and a liquid 
drop. We set the density of the liquid drop 
higher than that of the thin film so that 
gravity caused the drop to move towards 
the solid surface. It has been numerically 
demonstrated that the presence of the 
surfactant delayed the decrease of the thin 
film height insignificantly. Meanwhile, the 
surfactant adding rate significantly increased 
the thin film's height, but for a certain range 
of bond number value and viscosity ratio. 

Figure 6. The dynamics of thin film's height at 0x  for 3   and different 
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