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A B S T R A C T   A R T I C L E   I N F O 

The modification of kaolin with nano-size fillers has 
exhibited excellent performance in the adsorption process. 
Carbon quantum dots (CQDs) are the new generation of 
nanoparticles that have attracted interest for their 
utilization as modifiers. In this study, a composite of 
metakaolin(MK)/CQDs was synthesized and tested for 
methylene blue (MB) removal. The heating and acid-alkali 
treatment of kaolin transformed it into MK. The interaction 
between MK and CQDs was analyzed using XPS to detect 
the binding of pyridic NH2 and C-N. By loading CQDs into 
the kaolin matrix, the surface area was improved and the 
removal of MB increased. For a lower MB concentration at 
5 ppm, the removal efficiency could reach 96%. The 
composite exhibited good regeneration through the 
recyclability test. 
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1. INTRODUCTION 
 

Industries (such as textile, leather, paper, 
and pulp) commonly use synthetic dyes for 
coloring purposes. The textile industry 
contributes the highest amount of dye 
effluent (Katheresan et al., 2018). Around 
700,000 tonnes of coloring dyes are 
manufactured each year, amounting to 
around 100,000 commercially accessible 
dyes to date (Katheresan et al., 2018).  

These dye effluents lead to serious 
environmental concerns. Even at a low 
concentration in the water body, the dyes 
can disturb the growth of aquatic life due to 
their reflective and absorptive 
characteristics toward sunlight, which 
interferes with photosynthesis (Natarajan et 
al., 2018). Additionally, the consumption of 
dye-contaminated water could lead to 
central nervous system disorders, infections 
of the skin and eye, respiratory problems, 
and immune suppression (Natarajan et al., 
2018). 

Therefore, the removal of dye has 
become an area of interest for many 
researchers. Various methods have been 
employed to mitigate the issue, such as 
adsorption, advanced oxidation process, 
Fenton reaction, ozonation, photochemical 
process, coagulation and flocculation, ion 
exchange, and filtration (Katheresan et al., 
2018). Adsorption is the most effective 
method as it prevents the formation of 
unwanted intermediate components, and 
operates with lesser contact time. Besides 
that, adsorption operates at a low cost with 
a simple design and mechanism (Awad et 
al., 2019; Fadillah et al., 2020; Natarajan et 
al., 2018).  

Nanocomposites offer high porosity and 
surface area, which effectively allow them 
to capture cations. Nanocomposites also 
have high chemical reactivity, binding 
capacity, and versatility upon modification, 
which makes them ideal for the adsorption 
process (Awad et al., 2019; Fadillah et al., 
2020; Mohapi et al. 2020). The utilization of 

natural materials such as clay for adsorption 
has gathered much interest due to their 
unique layered morphology, characteristics, 
abundance, and excellent adsorption 
properties (Awad et al., 2019; Mohapi et al., 
2020).  

Kaolin is abundantly found in nature and 
has shown the potential to be used as a low-
cost adsorbent for toxic pollutants in aquatic 
environments. It has high chemical stability, 
cation exchange capacity, modifiable 
layered structure, small negative charge, 
and high specific surface area (Asuha et al., 
2020; Fei et al., 2020; Lertcumfu et al., 2020; 
Mustapha et al., 2019). Its layered mineral 
structure consists of alumina octahedral and 
silica tetrahedral sheets with shared oxygen 
atoms. In addition, the surface of alumina 
octahedral layers is covered with hydroxyl 
groups that enable bridging between the 
layers through hydrogen bonds (Asuha et 
al., 2020; Fei et al., 2020; Lertcumfu et al., 
2020). The enhancement of surface 
properties and adsorption ability of kaolin 
can be done through activation and 
calcination of materials. The calcination of 
kaolin has shown to induce its reactivity, 
with the temperature used usually ranging 
from 550 to 950°C, which changes the 
material to metakaolin (MK) (Asuha et al., 
2020; Caballero et al., 2019; David et al., 
2020).  

The heating process also removes the 
impurities and improves the surface area of 
kaolin (Mustapha et al., 2019; Zhang et al., 
2019a). However, calcination could affect 
the structural integrity of kaolin, and 
eliminate the hydroxyl group (Asuha et al., 
2020; Niu et al., 2019). Therefore, acid and 
alkali treatments were performed by many 
researchers to increase the surface area and 
surface functional groups (Asuha et al., 
2020; Boukhemkhem & Rida, 2017; Niu et 
al., 2019; Valeev et al., 2020). 

Further improvement of kaolin 
performance for the removal of cationic 
dyes has been performed using various 
types of nanoparticles, such as Fe3O4, TiO2, 
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and CuFe2O4, as well as carbonaceous 
material such as carbon nanotube and 
graphene oxide (GO) (Alfred et al., 2020; 
Awad et al., 2019; Fei et al., 2020; He et al., 
2018; Meigoli Boushehrian et al., 2020; 
Wongso et al., 2019).  

CQDs is an attractive nanomaterial with 
good chemical and optical stability, high 
specific surface area, and excellent 
adsorption capability (Chung Hui et al., 
2021; Liu et al., 2017b; Wongso et al., 2020; 
Yahaya Pudza et al., 2020; Zainal Abidin et 
al., 2020). The adsorption performance of 
CQDs has been tested for the removal of 
heavy metals such as cadmium and lead also 
for the removal of cationic dyes in the form 
of composites (de Oliveira et al., 2020; 
Yahaya Pudza et al., 2020; Yang et al., 2019; 
Yin et al., 2020; Zainal Abidin et al., 2020).  

The adsorption of pollutants can be 
greatly enhanced by incorporating CQDs 
into the matrix of kaolin, which could 
facilitate the addition of abundant surface 
functional groups. As a result, the 
adsorption performance is enhanced 
through van der Waals forces, hydrogen 
bonds, or even electrostatic attraction with 
pollutants (Yahaya Pudza et al., 2020; Yin et 
al., 2020). To the best of our knowledge, the 
combination of kaolin with CQDs for the 
removal of pollutants remains limitedly 
explored. In this study, CQDs were loaded 
into the kaolin matrix, and the composite 
was characterized by its crystallinity, 
functional groups, and surface area.  

The composite showed an increase in 
surface area, which led to the enhancement 
of methylene blue (MB) dye removal for MB 
concentrations ranging from 5 to 20 ppm. 
The sample was then re-used to study its 
potential for recyclability. The fitting for the 
kinetic models was performed based on the 
collected adsorption data. 

 

2. LITERATURE REVIEW 
2.1. Kaolin 

Many different separation techniques, 
such as physical, chemical, and adsorption 
processes, have been used to separate dyes 
from wastewater. From the techniques 
stated above, physical and chemical 
processes are found to be too costly and not 
environmentally friendly. Therefore, 
adsorption is an excellent technique to 
remove dissolved organic pollutants such as 
dyes from wastewater (Kandisa & K.V, 
2016). Adsorption is a process that mainly 
utilizes surface forces (Ragadhita & 
Nandiyanto, 2021).  

Adsorption happens when the adsorbate 
is being adsorbed by the adsorbent, which 
has a great porous surface structure and 
liquid-solid intermolecular forces of 
attraction (Ragadhita & Nandiyanto, 2021). 
A low-cost adsorbent is defined as one that 
is abundant in nature or is a by-product or 
waste from industries, and requires little to 
no processing (Dewi et al., 2021; Fiandini, 
2020; Nandiyanto et al., 2022a).  

Clay minerals act as good adsorbents 
because of their characteristics of having 
large surface areas relative to their small 
particle size and high cation exchange 
capacity (Awad et al., 2019). Hence, their 
surface reactions have significant 
biochemical and environmental effects on 
the soil and water. Such minerals can be 
used extensively because they are abundant 
and available at a lower cost. These 
advantages support the use of minerals in 
the decontamination and remediation 
treatment process.  

Table 1 represents the removal of various 
chemical pollutants and dyes in wastewater 
or solution by utilizing different types of 
adsorbents. 
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Table 1. Performance of adsorbents on the removal of pollutants in an aqueous system. 

No 
Type of 

Adsorbent 
Parameter Condition 

Pollutant 
Model 

Reference 

1 Tamazert 
Kaolin 

pH 7.2 Methylene 
blue 

(Boukhemkhem 
& Rida, 2017) Concentration 100-400 mg/L 

Dosage 10 g/l 
Temperature 30°C 
Adsorption Capacity 7.2 mg/g 

2 Activated 
Carbon 
from Rice 
Husk Ash 

pH 4-8 Phenol (Anshar et al., 
2016) Concentration 50 mg/L 

Dosage - 
Temperature 26-34°C 
Adsorption Capacity 3.9370 mg/g 

3 Bentonites pH 11-12 Methylene 
blue 

(Çiftçi, 2022) 
Concentration 500-800 mg/L 
Dosage - 
Temperature 25°C 
Adsorption Capacity 357.1-500 mg/g 

4 Saudi Red 
Clay 

pH 6.4 Methylene 
blue 

(Khan, 2020) 
Concentration 100 mg/L 
Dosage 0.3 g/L 
Temperature 25°C 
Adsorption Capacity 50.25 mg/g 

5 Zeolites 
from Coal 
Fly Ash 

pH - Ammonium (Prihastuti & 
Kurniawan, 
2022) 

Concentration 100 mg/L 
Dosage - 
Temperature - 
Adsorption Capacity 18.025 mg/g 

6 Activated 
Carbon 
from 
Coconut 
Shell 

pH 8 Methylene 
blue 

(Khuluk et al., 
2019) Concentration 250 mg/L 

Dosage 0.1 g/L 
Temperature - 
Adsorption Capacity 15.775 mg/g 

7 Natural 
Zeolite (size 
of 3000 
µm) 

pH - Curcumin (Nandiyanto et 
al., 2022b) Concentration 10-90 mg/L 

Dosage - 
Temperature - 
Adsorption Capacity 181.8-421.49 mg/g 

8 ZIF-8 pH - Curcumin (Ragadhita & 
Nandiyanto, 
2022) 

Concentration  20-80 mg/L 
Dosage - 
Temperature - 
Adsorption Capacity  11.668 mg/g 

9 Silica from 
Rice Husk 

pH - Curcumin (Ragadhita et 
al., 2019) Concentration 50 mg/L 

Dosage 0.1 g/L 
Temperature - 
Adsorption Capacity 82.64 mg/g 

10 Kaolin-
Bentonite 

pH 9.1 Rhodamine 
B 

(He et al., 
2022) Concentration 50-400 mg/L 

Dosage - 
Temperature 25°C 
Adsorption Capacity 12.68 mg/g 
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Table 1 (Continue). Performance of adsorbents on the removal of pollutants in an aqueous 
system. 

No 
Type of 

Adsorbent 
Parameter Condition 

Pollutant 
Model 

Reference 

11 Moroccan 
Clay 

pH 11 Methylene 
blue 

(Loutfi et al.,  
2022) Concentration 100-900 mg/L 

Dosage 0.5 g/L 
Temperature 60°C 
Adsorption Capacity 456.62 mg/g 

12 Kaolin 
(from 
Nigeria) 

pH 5.84 Sulfate in 
tannery 
wastewater 

(Mustapha et 
al., 2019) Concentration - 

Dosage 0.2 g/L 
Temperature - 
Adsorption Capacity 459.896 mg/g 

13 Kaolin/ZnO pH 5.84 Cr(VI) from 
tannery 
wastewater 

(dMustapha et 
al., 2020) Concentration - 

Dosage 0.2 g/L 
Temperature 29°C 
Adsorption Capacity 117.25 mg/g 

 
Kaolin is a type of clay mineral with a 1:1 

layer ratio of tetrahedral silica and 
octahedral aluminum sheets (Zhang et al., 
2021). Clay minerals can be found in soil and 
deposits, and are made up of phyllosilicates 
with sizes smaller than 2 µm. They are 
composed of layered units of one or two 
tetrahedral silica sheets attached to an 
octahedral aluminum sheet (Guggenheim & 
Martin, 1995; Zhang et al., 2021).  

The complex structure of clay can be 
modified, pre-treated, and combined with 
other materials to produce an adsorbent 
with a high surface area. In addition, most 
types of clays have negatively charged 
surfaces that can attract cationic pollutants 
and facilitate the ion-exchange process 
(Zhang et al., 2021). The negatively charged 
surface is the result of isomorphic 
substitution in the tetrahedral and/or 
octahedral sheets (Zhang et al., 2019). 

Kaolin and zeolite are two good examples 
of low-cost natural mineral adsorbents, as 
shown in Table 1. The uptake of pollutants 
onto the surface of kaolin is regulated by ion 
exchange if the uptake does not exceed the 
cation-exchange capacity, and by 
hydrophobic bonding, if the uptake exceeds 

the cation-exchange capacity (Sen Gupta & 
Bhattacharyya, 2012). Besides that, the type 
of pollutants determines the efficiency of 
surface adsorption, as the interactions can 
occur through weak van der Waals bonding, 
hydrophobic effects, hydrogen bonding, or 
even ligand complex formation (Sen Gupta 
& Bhattacharyya, 2012). 

2.2. Carbon Quantum Dots 

Functional groups with an abundance of 
oxygen atoms (e.g., -OH, -COOH, C=O) are 
present on the surface of CQDs (Rani et al., 
2020). With the presence of these oxygen-
containing functional groups and low 
toxicity, CQDs are the best alternative 
material for the adsorption of contaminants, 
especially for organic pollutants and heavy 
metals (Rani et al., 2020).  

The adsorption process on the surface of 
CQDs can occur through physical and 
chemical interactions through the 
availability of functional groups. Functional 
groups (such as amines and carboxyls) can 
facilitate the binding of metal ions through 
π-π stacking and electrostatic attraction 
(Rani et al., 2020). The modification of CQDs 
with nitrogen- and oxygen-containing 
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functional groups create active sites for the 
adsorption of metal ions (Chung Hui et al., 
2021; Zainal Abidin et al., 2020).  

The experimental data for the removal of 
methyl orange with CQDs/ZnFe2O4 suggests 
the inclusion of van der Waals forces 
besides electrostatic attraction in the 
adsorption process (Shi et al., 2018). A 
previous study by Liu et al. investigated the 
removal of tetracycline using NiFe/CQDs, 
and the results showed that the high 
adsorption of the antibiotic can be ascribed 
to surface complexation, electrostatic 
interaction, and cation-exchange between 
tetracycline and the CQDs composite (Liu et 
al., 2017a). The synergistic effects of surface 
complexation, π-π bonding, covalent 
bonding, electrostatic interaction, and 
cation exchange determine the adsorption 
performance of CQDs (Long et al., 2021). 

3. METHOD 
3.1. Materials 

Kaolin was obtained from Kaolin (M) Sdn. 
Bhd. (Malaysia). CQDs were sourced from 
rice husks that were collected from Jabatan 
Pertanian Negeri Perak, Malaysia. MB, the 
model dye used in this study, was obtained 
from Bendosen (Malaysia). Sodium 
hydroxide (NaOH) was purchased from 
Sigma Aldrich (USA). Hydrochloric acid (HCl) 
37% was purchased from Merck (USA). 
Deionized (DI) water was used for the 
preparation of solutions, and all chemicals 
were used as received. 

3.2. Synthesis of CQDs 

CQDs were synthesized from rice husks 
with modifications from the methodology by 
Chung et al. (2020). One gram of rice husks 
was collected and washed thoroughly with 
DI water to remove impurities. The husks 
were then dried and blended until 
powdered consistency was obtained. The 
powdered sample was then oxidized using 
0.1 M HCl and centrifuged at 4000 rpm for 
15 minutes (min).  

The powdered sample was then washed 
three times using DI water through 
centrifugation at 4000 rpm for 15 min. The 
obtained samples were oven-dried 
overnight at 80°C. A sample of 100 mg dried 
rice husk powder was then placed inside a 
Teflon-lined autoclave with 20 mL DI water. 
The solution was heated at 190°C for 12 h. 
After heating, the solution was cooled down 
to room temperature, followed by vacuum 
filtration and centrifugation to obtain the 
CQDs supernatant. The supernatant was 
dialyzed in DI water overnight to obtain 
purified CQDs. 

3.3. Modification of Kaolin and 
Kaolin/CQDs 

The modification of kaolin was adapted 
from the method by Boukhemkhem & Rida, 
(2017), where pristine kaolin was heated at 
800°C for 5 hours (h) to obtain MK and 
remove impurities. 30 g of MK was then 
treated with 60 mL of 2.5 M HCl solution at 
80°C for 7 h. The sample was then washed 
with distilled water and dried in an oven at 
110°C for 3 h. This step was followed by 
alkali treatment with 60 mL of 0.5 M NaOH 
solution under similar conditions as acid 
treatment. Later, the samples were washed 
and dried. To obtain kaolin/CQDs samples, 
10, 20, and 40 mL of CQDs were mixed with 
and processed with both acid and alkali 
treatment to produce MK/CQD(10), 
MK/CQD(20), and MK/CQD(40). 

3.4 Characterization of Synthesized 
Materials 

The morphology of CQDs was 
characterized using high-resolution 
transmission electron microscopy (HRTEM) 
(Tecnai G2 20 S-Twin), and Fourier 
Transforms Infrared Analysis (FTIR, Perkin 
Elmer) from 500 to 4000 cm-1 (Nandiyanto 
et al., 2019). The photoluminescence (PL) of 
CQDs was verified using a PL 
spectrophotometer (Edinburgh Instrument 
FLS920) with 420 nm as excitation 
wavelength.  
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The crystallinity and functional groups of 
pristine kaolin, MK and MK/CQD, were 
analyzed using X-ray powder diffraction 
(XRD, Bruker D8) and Fourier transform 
infrared analysis (FTIR, Perkin Elmer) from 
500 to 4000 cm-1 (Fatimah et al., 2021; 
Obinna, 2022; Sukamto & Rahmat, 2022), 
respectively. The morphologies of pristine 
kaolin, MK, and MK/CQD were characterized 
using field emission scanning electron 
microscopy (FESEM, Zeiss Supra 55 VP) 
(Yolanda & Nandiyanto, 2021), and both the 
surface area and pore diameter of the 
samples were identified using Micrometrics 
ASAP 2020 Plus.  

The point of zero charges (pHpzc) of the 
samples was determined using the pH 
floating method (Li et al., 2018). A series of 
vials containing 20 mL of DI water was 
prepared, with initial pH values of 2, 4, 7, 10, 
and 12. 0.1 M HCl and 0.1 M NaOH were 
used to adjust the pH. Then, each vial was 
filled with 50 mg of MK and MK/CQD 
samples and kept for 24 h to achieve 
equilibrium at 25°C. The final pH values 
were calculated and plotted against the 
initial pH. Herein, the pHpzc value was 
determined from the graph as the point of 
intersection where the initial pH vs final pH 
curve meets the y = x line.  

The elemental compositions on the 
samples were analyzed using a K-Alpha X-ray 
Photoelectron Spectrophotometer (XPS) 
(Thermo Fisher Scientific, USA) equipped 
with an Al K(alpha) radiation source with a 
spot size of 400 m. The XPS was run with 
constant analyzer energy (CAE) at a pass 
energy of 200 eV and a step size of 1.0 eV. 
Deconvolution of peaks was done using the 
Gaussian functions in the OriginPro 2018 
software. 

3.5. Adsorption of MB 

The concentration of MB at 10 ppm was 
prepared with 100 mL distilled water and 
mixed with the adsorbent. This solution was 
continuously shaken at 200 rpm. Samples 

were taken at the time intervals of 15, 30 
min, 1, 2, 4, 6, and 8 h, and characterized 
using a UV Vis spectrophotometer (λ = 665 
nm, Shimadzu UV-1800). The % removal of 
MB was calculated with Eq. (1) as follows: 

% removal = 
C0-Ct

C0
 × 100%           (1) 

where C0 is the initial concentration and Ct is 
the concentration at a specific time interval. 
For the effect of adsorbent amount, the 
amount of MK was varied at 1, 2, 3, 4, and 5 
g at the MB concentration of 10 ppm.  

The amount of adsorbent at 5 g was then 
used for MK/CQD samples. Initial MB 
concentrations at 5, 10, 15, and 20 ppm 
were prepared, and the solution sample was 
measured with UV Vis analysis after 8 h of 
adsorption. The amount of adsorption at a 
time, t, was calculated using Eq. (2), where V 
is the volume of the solution and W is the 
amount of adsorbent. 

qt =
(C0-Ct)V

W
              (2) 

The recyclability test was performed with 
MK/CQD(40) using 10 ppm of MB for 4 
consecutive cycles. Around 5 g of 
MK/CQD(40) was dispersed in 100 mL of 10 
ppm of MB. The solution was stirred for 8 h, 
then centrifuged to collect the adsorbent. 
The adsorbent was then washed thoroughly 
with DI water before reuse. The UV Vis 
analysis was performed after 8 h of 
adsorption. 

4. RESULTS AND DISCUSSION 
4.1. Morphology, Functional Groups of 
CQD, and Surface Area 

The synthesized CQDs showed spherical 
structures (Figures 1a and 1b) with an 
estimated average diameter of 0.21 nm.  
Moreover, the synthesized CQDs were 
found to be fluorescent (Figure 1c) with an 
emission wavelength of approximately 440 
nm. The intercalation and exfoliation of rice 
husks have been reported to generate CQDs 
through dispersion in acid and washing with 
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water, respectively (Hens et al.,2012; 
Wongso et al., 2019). Besides that, 
carbonization occurred during the 
hydrothermal process to produce small-
sized CQDs (Wongso et al., 2020). The FTIR 
spectrum of CQDs in Figure 1d shows the 
presence of C-H bending at 620 cm-1 (Raj & 
Chirayil, 2017; Chung Hui et al., 2021), C=O 
bonding (carbonyl) at 1639 cm-1 (Raj & 
Chirayil, 2017;Chung Hui et al., 2021; 
Wongso et al., 2020), and O-H stretching 
due to carboxylic and absorbed water at 
3300 cm-1 (Raj & Chirayil, 2017;Chung Hui et 
al., 2021; Wongso et al., 2020). 

Pristine kaolin exhibited a layered 
structure, and stacks of kaolin sheets were 
observed to adhere to each other with 
thicknesses ranging from 20 to 60 nm 
(Figure 2a). Small fragments were rarely 
observed as well. However, the morphology 

of the material experienced changed with 
modification, such that the structural layers 
were disintegrated into fragments which can 
be seen along with stacks of kaolin sheets 
(Figures 2b, d, f, h). High-temperature 
treatment likely disrupted the morphology 
and caused defects to the material as have 
been reported in earlier studies, which could 
have reduced the structure size (Chai et al., 
2020; Vakalova et al., 2019), whereas the 
acid-alkali treatment might have increased 
the spaces between particles 
(Boukhemkhem & Rida, 2017; Ferrazzo et 
al., 2020).  

The slit-shape pores were visible on the 
surface of modified kaolin (MK and 
MK/CQD), which contributed to the porosity 
of kaolin and its adsorption performance 
(Figures 2c, e, g, i).  

 

Figure 1. Morphologies (a,b), PL spectrum (b), and FTIR spectrum (d) of CQDs. 
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Figure 2. FESEM images of a) pristine kaolin, b) MK, c) and d) MK/CQD(10), e) and f) 
MK/CQD(20), g) and h) MK/CQD(40).      

 

The surface area of pristine kaolin, MK ad 
MK/CQD were presented by isotherm 
graphs (Figure 3). The isotherm of pristine 
kaolin (Figure 3a) followed a type III 
isotherm for non-porous or macroporous 
material, due to compaction and 
aggregation of the mineral sheets (Kuila & 
Prasad, 2013; Thommes et al., 2015). On the 
other hand, MK and MK/CQD exhibited type 
IV isotherm (Figures 3b-e), which is typical 
for mesoporous materials with a pore size 
ranging from 3.7 to 6.22 nm. Hence, the 
modification successfully transformed kaolin 
into a porous structure.  

The hysteresis loop could be observed, 
due to capillary condensation (Chai et al., 
2020; Thommes et al., 2015). The 
modification of kaolin through high 

temperature and acid-alkali treatment 
improved the surface area of the material 
from 11.31 to 16.23 m2/g due to the 
formation of mesopores (Chargui et al., 
2018; Shu et al., 2014). A previous study 
showed similar results whereby the acid 
treatment of kaolin improved its surface 
area from 10.44 to 19.27 m2/g (Chai et al., 
2020).  

Further improvement of the surface area 
could be achieved using CQDs as modifiers 
at 21.5, 37.23, and 46.29 m2/g for 
MK/CQD(10), MK/CQD(20), and 
MK/CQD(40), respectively, which was 4 
times the surface area of pristine kaolin. This 
could be due to the uniform dispersion of 
CQDs in kaolin to provide more adsorption 
sites. 
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Figure 3. N2 adsorption-desorption isotherms of a) pristine kaolin, b) MK, c) MK/CQD(10), d) 
MK/CQD(20), and e) MK/CQD(40). 

4.2. Crystallinity and Functional Groups 

The XRD spectra in Figure 4 exhibited 
peaks belonging to kaolinite and quartz 
that build the material. Pristine kaolin 
showed a main peak at 24.8° (Figure 4a). 
Meanwhile, the other peaks at 19.8, 34.9, 
and 38.4° represent kaolinite. The 
material transformed to MK when the 
modification was performed, as shown in 
Figure 4b. The main peak of quartz could 
be found at 26.7°, and other peaks at 
20.8, 36.7, 39.5, 45.6, and 50°.  

The modified kaolin (MK and MK/CQD) 
contains SiO2 at around 56, 63, 67, and 
62% for MK, MK/CQD(10), MK/CQD(20), 
and MK/CQD(40), respectively, while the 
remaining comprises Al2O3, Fe2O3, TiO2, 
CaO, MgO, K2O, and Na2O. Previous 
studies have shown that increased SiO2 
contents are expected when kaolin 
transforms into MK through heat 
treatment. The SiO2 contents can vary 
from 50 to 60%, sometimes reaching 
74.3% (Fadzil et al., 2017; Pillay et al., 
2020; Rashad, 2013; Sullivan et al., 2018).
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Figure 4. XRD spectra of a) pristine kaolin, b) MK, and MK/CQD. 

The remainder consists of kaolinite and a 
small amount of muscovite. The results are 
in agreement with previous studies using 
high-temperature treatment at 700, 750, 
and 800°C to transform kaolin to MK, which 
could be due to a dihydroxylation reaction 
(Boukhemkhem & Rida, 2017; I. Khan et al., 
2017; Lertcumfu et al., 2020). Due to the 
loss of the hydroxyl group, aluminum 
coordination changed from six-fold to a 
mixture of six-, five- and four-fold, which 
produced MK, the more reactive form of 
kaolin (Gasparini et al., 2013).  

Functional groups of pristine kaolin and 
modified kaolin (MK and MK/CQD) are 
shown in Figure 5. For pristine kaolin, Si-O-
Al stretching was assigned to the peaks at 
695.5, 757, and 790.5 cm-1. These peaks 
changed to a broad band at 790.5 cm-1 
which was consistent with the distortion of 
octahedral and tetrahedral layers due to 
heating (Boukhemkhem & Rida, 2017; 
Wongso et al., 2019).  

The peaks at 912.56 and 1034.66 cm-1 for 
pristine kaolin were attributed to Si-O-T (T: 
Si or Al) with asymmetric stretching 
vibration (Lertcumfu et al., 2020). These 
peaks also changed to a broad band at 
987.57 cm-1 which could be due to the 
disappearance of Al-OH units 
(Boukhemkhem & Rida, 2017). These 
changes were consistent with the disorderly 
characteristic of MK (Boukhemkhem & Rida, 
2017). In addition, the adsorbed water 
resulted in the peaks at 3614.6, 3703.1, 
3370.4, 1639.5, and 1632.35 cm-1, which 
were most likely attributed to H-O-H 
stretching and bending vibrations (Wongso 
et al., 2019). XPS is one of the fundamental 
analyses to study the chemical state of 
elements. Figure 6 and Table 2 show the 
full-scan XPS spectra of MK/CQD composites 
and the atomic percentage of each element, 
respectively. The prominent peaks of O1s, 
Al2p, Si2p, C1s, and N1s were observed 
throughout the composites. 

 

 

Figure 5. FTIR spectra of a) pristine kaolin, b) MK and MK/CQD. 
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Figure 6. Full-scan XPS spectra of MK/CQD. 

Table 2. The atomic percentage of MK/CQD. 

Sample 
Atomic percentage (at %) 

Al Si O C N 
MK/CQD(10) 18.72 10.7 51.84 18.08 0.48 
MK/CQD(20) 20.63 8.93 52.1 18.27 0.26 
MK/CQD(40) 17.77 10.11 51.74 20.09 0.28 

 
The high-resolution spectra of Al2p from 

Figure 7a exhibited Al2p1/2 and Al2p3/2 for 
each MK/CQD composite. MK/CQD(10) 
showed binding energies of 76.08 and 77.28 
eV, which corresponded to Al2p 1/2, and 
binding energy of 79.08 eV which 
corresponded to Al2p 3/2 (Lan et al., 2019; 
Liu et al., 2020; Mudgal et al., 2021; Ye et 
al., 2017). The MK/CQD(20) exhibited higher 
binding energies of Al2p1/2 and Al2p3/2 at 
76.88, 77.18, 78.58, and 80.08 eV. The 
MK/CQD(20) also showed binding energy of 
68.08 eV, which corresponded to Al metal 
(Liu et al., 2013).  

Moreover, MK/CQD(40) exhibited higher 
binding energies of Al2p1/2 and Al2p3/2 at 
76.68 and 79.18 eV, respectively, as 
compared to MK/CQD(10). Although the 
difference in binding energy was small, the 
shift to higher binding energy was present. 
This chemical shift might be induced by the 
interaction of the deposited CQDs (Liu et al., 
2013).  The high-resolution of Si2p from 

Figure 7b revealed that each MK/CQD 
composite exhibited Si2p3/2 and Si2p1/2 (Liu 
et al., 2020). Higher CQDs concentration 
towards MK resulted in a slightly higher shift 
of binding energy of Si2p spectra.  

Moreover, the high-resolution spectra of 
O1s in Figure 7c revealed that MK/CQD 
composites were rich in oxygen, shown 
through the binding energies of O-Al/ O-H 
and Si-O-T (sialate bonds)/ C-O (Lan et al., 
2019; Liu et al., 2020; Mudgal et al., 2021).  

The interaction of MK and CQDs could be 
seen from the C1s high-resolution spectra in 
Figure 7d, where the composites exhibited 
C-O/C-N, C=O, and a carboxyl group (COOH) 
(Li et al., 2017; Nugraha et al., 2021; Ratlam 
et al., 2020). Additionally, the N element 
was also shown through the N1s high-
resolution spectra in Figure 7e. The MK/CQD 
composites showed the binding energies of 
pyridic NH2 and C-N (Li et al., 2017; Nugraha 
et al., 2021; Ratlam et al., 2020). 
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Figure 7. High-resolution XPS spectra of MK/CQD (a) Al2p, (b) Si2p, (c) O1s, (d) C1s, (e) N1s. 
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4.3. Adsorption of MB 
4.3.1. Effect of adsorbent amount 

The adsorption test was performed on 
MK samples to identify the optimum 
amount of adsorbent required to reach 
maximum adsorption. One gram of 
adsorbent could remove approximately 35% 
of MB. The removal was increased further to 
59.31, 59.35, and 60% with the use of 3, 4, 
and 5 g of adsorbent, respectively.  

This was due to the presence of more 
active sites (Figure 8). Further MB removal 
experiments were conducted with 5 g of 
adsorbent to maximize the adsorption 
process. The removal of MB was further 
improved using MK/CQD as the adsorbent, 
with MB removal at 61.86, 71.57, and 
77.04% using MK/CQD(10), MK/CQD(20), 
and MK/CQD(40), respectively (Figure 9a). 

Hence, the overall efficiency of MB 
removal increased by 2.2-fold. The 
enhanced performance of MB removal could 
be observed for MK/CQD when the amount 
of CQDs loaded was increased from 10 to 40 
mL.  The improvement in the surface area of 
kaolin through heating, acid-alkali 
treatment, and CQDs loading resulted in a 
porous structure with more active sites for 
MB adsorption.  

The surface area was successfully 
increased by 4 times from 11.31 to 46.29 
m2/g, which improved the efficiency of MB 
removal. The adsorption with MK/CQD(20) 
and MK/CQD(40) was reported to be more 
than 50% after only 30 min, which could be 
attributed to the abundant adsorption sites.  

The adsorption was over 60% of MB after 
2 h, where equilibrium was reached. The 
utilization of CQDs as the sole adsorbent is 
shown in Figure 9b, where approximately 
40% of MB was adsorbed after 8 h. The 
adsorption of cations onto the surface of 
CQDs could happen through the 
electrostatic interactions of hydroxyl ions 
that were available on CQDs (Chung Hui et 
al., 2021; Zainal Abidin et al., 2020).  

Similar performance was observed when 
graphene oxides and graphene quantum 
dots were used. After 8 h, approximately 40 
and 20% of reactive red 2 dye were 
removed, respectively. This could be due to 
π-π interaction, hydrogen bonding, and 
electrostatic interaction in the samples (de 
la Luz-Asunción et al., 2020). To study the 
relationship between the adsorption time 
and adsorption capacity of MK and 
MK/CQD, adsorption kinetic models were 
constructed (Figure 10), and the calculated 
parameters are shown in Table 3. 

 

 

Figure 8. Effect of MK amount on removal profile of 10-ppm MB. 
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Figure 9. Removal profile of 10-ppm MB using MK/CQD (a) and CQDs (b). 

 

 

Figure 10. Pseudo-first-order kinetic models of MK (a) and MK/CQD (c). Pseudo-second-
order kinetic models of MK (b) and MK/CQD (d). Both kinetics models were derived from 

data of removal of 10 ppm of MB. 
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Table 3. Adsorption kinetic model parameters of 10-ppm MB removal. 

Sample 
qe 

(mg/g), 
exp. 

Pseudo-first-order 
kinetic 

Pseudo-second-order kinetic 

qe 
(mg/g), 

calc. 

k1 
(min-1) 

R2 
qe 

(mg/g), 
calc. 

k2 
(g/mg.min) 

R2 
h 

(mg/g.min) 

MK (5g) 119.748 68.573 0.0103 0.744 119.7605 0.000259 0.983 3.708 
MK/CQD(10) 123.708 71.848 0.0154 0.887 127.551 0.000271 0.991 4.409 
MK/CQD(20) 143.126 63.567 0.0169 0.789 145.138 0.000412 0.996 8.689 
MK/CQD(40) 154.065 62.355 0.0155 0.69 155.521 0.000435 0.997 10.515 

 

The pseudo-first-order and pseudo-
second-order kinetics were employed as 
kinetic models, and corresponding 
equations for both models are expressed in 
Eqs. (3) and (4) (Zhang et al., 2019b): 

ln(qe-qt)= ln qe-k1t            (3) 

t
qt

⁄ =
1

k2qe
2 +

t

qe

             (4) 

where qe and qt are adsorption capacity at 
equilibrium and at a certain time interval (t) 
respectively. k1 and k2 are the rate constants 
for pseudo-first-order and pseudo-second-
order kinetics, respectively. The fitting of 
experimental data for both kinetic models 
showed high linear regression for pseudo-
second-order kinetics (R2 = 0.99) (Table 3).  

The calculated qe values also exhibited 
high similarity with experimental qe values. 
Therefore, the adsorption occurred with 

chemisorption as the rate-limiting step. 
Similar observations were reported by 
Pirhaji et al. (2020) and Niu et al. (2019), 
where halloysite/GO and coal-series kaolin 
were used to remove MB, and the 
adsorption displayed pseudo-second-order 
kinetics.  

Among all samples, MK/CQD(40) 
provided the highest adsorption capacity at 
154.065 mg/g and the highest rate constant 
at 4.35 × 10-4. The initial sorption rate, h, 
could reach up to 10 mg/g.min for 
MK/CQD(40). The adsorption capacity value 
was quite remarkable for kaolin, and 
comparable to other kaolin samples, as 
presented in Table 4. Therefore, the 
composite material has the potential to be 
used as an adsorbent for dye removal, and 
even for the treatment of high dye 
concentrations. 

 
Table 4. Comparison of kaolin samples’ maximum adsorption. 

Material 
Maximum 

adsorption (mg/g) 
Reference 

Eucalyptus bark/kaolin clay 71.48 (Tan & Sen, 2020) 
Kaolin/CuFe2O4 120.48 (Boushehrian et al., 2020) 
Graphene oxide/kaolin 4.818 (Lertcumfu et al., 2020) 
Aluminosilicates with kaolinite 
and halloysite structures 

100 (Golubeva et al., 2020) 

Tamazert kaolin modified with 
dimethyl sulfoxide 

34.64 (Lellou et al., 2020) 

Saudi red clay 50.25 (Khan, 2020) 
Iraqi red kaolin 240.4 (Jawad & Abdulhameed, 

2020) 
Activated kaolinite by Fe3O4 171 (Asuha et al., 2020) 
Kaolin nanospheres 184.9 (Zhang et al., 2019b) 
Kaolin/CQD 154.065 This study 
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4.3.2. Point of zero charges of MK and 
MK/CQD 

The pHpzc was determined at specific pH 
when the net charge on the surface of the 
material was zero (Chung Hui et al., 2021; 
Patawat et al., 2020). As depicted in Figure 
11, the pHpzc values for MK, MK/CQD(10), 
MK/CQD(20), and MK/CQD(40) were 4.25, 
4.2, 4.78, and 4.3, respectively. Since the 
solution pH for MB removal was higher than 
pHpzc at neutral pH, the adsorbent surface 
was negatively charged due to 
deprotonation of the surface.  

This improved the adsorption of 
positively charged MB on the adsorbent 
surface (Chung Hui et al., 2021; Li et al., 
2018; Patawat et al., 2020). This shows that 
MK and MK/CQD are effective for the 
adsorption of MB. When the solution pH is 

lower than pHpzc, the excess H+ is expected 
to inhibit the adsorption of MB (Li et al., 
2018). 

4.3.3. Effect of initial MB concentration 

The comparison of performance between 
MK/CQD(40) and MK at different MB 
concentrations is presented in Figure 12. 
The material could remove approximately 
96% of 5-ppm MB and 50% of 20-ppm MB. 
Figure 12 also shows the difference in 
performance between MK and MK/CQD(40). 
MK/CQD(40) performed better than MK 
with more removal by 5, 17, 20, and 16%, 
for 5, 10, 15, and 20 ppm of MB, 
respectively. From these results, MK/CQD 
showed the potential to be applied for a 
wide range of dye concentrations with 
remarkable removal performance. 

 

Figure 11. Determination of point zero charges for a) MK, b) MK/CQD(10), c) MK/CQD(20), 
and d) MK/CQD(40). 

DOI:  https://doi.org/10.17509/ijost.v7i2
 p- ISSN 2528-1410 e- ISSN 2527-8045 



Sambudi et al., Modification of Kaolin with Carbon Quantum Dots as … | 328 

Figure 12. MB removal at various initial concentrations. 

4.3.4. Recyclability of adsorbent 

The recyclability of adsorbent was 
studied for MK/CQD(40) using 10-ppm MB. 
As shown in Figure 13, MB removal achieved 
70.6% after cycles 1 and 2. Further reuse 
until cycle 4, reported decent MB removal at 
64.3%.  

The decreasing performance of MB 
removal could be due to the lodging of MB 
on the pores of MK/CQD(40), which cannot 
be removed from washing (Zhang et al., 
2019a). Despite that, the results show that 
the composite of MK/CQD has good 
regeneration ability, which can be used to 
treat high concentrations of dye. 

 

Figure 13. Recyclability of MK/CQD(40) for 10 ppm of MB.
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5. CONCLUSION 
 

The modification of kaolin through 
heating at high temperature and acid-alkali 
treatment has changed its phase to MK and 
improved its surface area. However, further 
improvements can be achieved by 
incorporating CQDs into a kaolin matrix. The 
surface area can be improved up to 4 times, 
and the removal of MB increased by 2-folds. 
The incorporation of CQDs transformed the 
kaolin into a porous structure with more 
active sites. MK/CQD(40) exhibited good 
potential for reusability, where the 
composite retains more than 60% of MB 
removal after 4 cycles of usage. 
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