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An adequate sustainable production inventory model is 
expected to represent complex real-life cases involving fuel, 
emissions, and electricity costs as well as multi-materials, 
quality degradation, and probabilistic demand. Therefore, 
this study was conducted to develop this kind of model to 
determine the number of raw material shipments (mj), 

production cycle time (T), and the number of finished goods 
delivered (n) to maximize the Expected Total Profit (ETP). The 
proposed model is based on a bibliometric literature analysis 
of the sustainable production-inventory problem which is 
visualized using the VOSviewer. Moreover, a sophisticated 
Harris-Hawks Optimization (HHO) algorithm was proposed to 
solve the problems identified in the sustainable production 
inventory model optimization. It is also important to note 
that three numerical cases were provided to evaluate the 
performance of the algorithm. The findings showed that the 
suggested HHO method outperforms the Genetic Algorithm 
(GA) and Particle Swarm Optimization (PSO) in maximizing 
ETP and this means it is better for ETP optimization. It was 
also discovered from the sensitivity analysis that an increase 
in the rate of quality degradation (k) led to a reduction in 
both the ETP and T. 
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1. INTRODUCTION 

Sustainability is currently an important 
global issue and has promotes stakeholders 
to focus on increasing the economic, 
environmental, and social dimensions (Negri 
et al., 2021). This requires implementing 
sustainable practices in industries to 
significantly reduce emissions, conserve 
resources (Mashud et al., 2022; Taghikhah 
et al., 2019), and solve social problems. The 
concept is being applied widely to supply 
chain activities and has been proven to be 
effective in improving company 
performance (Ho et al., 2022; Shekarian et 
al., 2022; Wang et al., 2019). Meanwhile, it 
is important to note that procurement, 
production, and distribution decisions in 
supply chain systems can affect supply chain 
performance (Lu et al., 2020; Maulana et al., 
2020).  

This is the reason scholars have 
attempted to integrate inventory decisions 
into the supplier and manufacturing levels 
(Utama et al., 2022a; Utama et al., 2022b), 
internal manufacturing (Liu et al., 2021), and 
manufacturing-customer relationship. One 
of the problems identified in integrated 
inventory is the production and 
procurement system which is popularly 
known as the Production Inventory model 
(Goyal & Deshmukh, 1992; Park, 1983). This 
led to the conduct of several relevant 
studies to solve this problem through the 
optimization of only the economic 
dimension. Therefore, there is a need to 
investigate the environmental and social 
dimensions. 

Different forms of sustainable production 
inventory models have been proposed with 
most of the previous studies discovered to 
have focused on minimizing one indicator of 
the environmental aspect such as electricity 
costs (Gautam et al., 2022), fuel 
consumption (Sarkar et al., 2017; Utama et 
al., 2022a; Wangsa & Wee, 2018), and 
emissions (Jaber et al., 2013; Jauhari et al., 
2022; Ullah et al., 2021).  

Others also attempted to combine two 
indicators such as fuel consumption and 
emissions in developing a new model 
(Wangsa, 2017; Wangsa et al., 2020). It was 
discovered that only Jauhari (2022) 
considered fuel, emissions, and electricity 
costs simultaneously. Moreover, it is also 
important to consider quality degradation in 
this model due to its existence in several 
industries including pharmaceutical (Silva-
Aravena et al., 2020), food (Ibrahim et al., 
2020; Lee et al., 2015), and agro-industry 
(Liu et al., 2018).  

Most previous studies assumed that a 
single finished product requires a single raw 
material (SRM) (Bhattacharjee & Sen, 2022). 
This means their models cannot be applied 
to products requiring multiple raw materials 
(MRM). The studies also assumed that 
product demand is deterministic (Fiorotto et 
al., 2021) without any consideration for 
stochastic demand. 

Advanced metaheuristic procedures have 
been proposed to optimize production 
inventory models based on the rapid 
advances in computer technology. These 
include Particle Swarm Optimization (PSO) 
(Taleizadeh et al., 2010) and Genetic 
Algorithms (GA) (Sadeghi et al., 2011), as 
well as the integration of the two algorithms 
(Sadeghi et al., 2013).  

However, no study used the Harris-Hawks 
Optimization (HHO) algorithm to optimize 
the sustainable production inventory model 
problem. It was discovered that Heidari et 
al. (2019) only proposed the HHO algorithm 
by mimicking Harris Hawks’ herd behavior in 
hunting prey.  

The algorithm was reported to have good 
performance in optimizing scheduling 
(Utama & Widodo, 2021), forecasting 
(Chaudhuri & Alkan, 2022), energy (Dev et 
al., 2022), and engineering field (Shehab et 
al., 2022). This means it has the potential to 
solve the problems associated with the 
sustainable production inventory model.  

Only a few studies considered fuel, 
emissions, and electricity cost indicators 
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simultaneously in a sustainable production 
inventory model. It was discovered that 
none considered the multi-material, quality 
degradation, and probabilistic demand 
indicators and this is the primary motivation 
for this study.  

The gaps in sustainable production 
inventory model research are also evident in 
the bibliometric literature analysis 
presented in section 2. Furthermore, HHO 
advanced algorithm was reported to have 
the potential to solve the problem of a 
sustainable production inventory model but 
it has not been applied for this purpose.  

This study also proposes to apply the 
HHO algorithm in resolving problems 
associated with the model. Therefore, the 
Research Goals (RG) include (RG 1) 
developing a sustainable production 
inventory model that considers multi-
materials, quality degradation, and 
probabilistic demands and (RG 2) applying 
the HHO algorithm to optimize the problems 
in the model.  

This means the practical contributions 
involved include: 
(i)  the development of a new model of 

sustainable production inventory by 
considering multi-materials, quality 
degradation, and probabilistic demands; 
and  

(ii)  the application of the HHO algorithm as 
an optimization tool to solve the 
problems of sustainable production 
inventory model. 

The structure of this paper is below: 
Section 2 provides a literature review and 
bibliometric analysis of the sustainable 
production inventory model. Section 3 
describes the system's characteristics, 
assumptions, notations, and the proposed 
model on the sustainable production 
inventory model. The proposed algorithm 
for optimizing the sustainable production 
inventory model is presented in Section 4. 
Section 5 provides study data and 
procedures. Section 6 presents results and 

discussions. Finally, this article concludes 
with conclusions. 

2. LITERATURE REVIEW AND BIBLIOMETRIC 
ANALYSIS 

2.1. Bibliometric Analysis 

This section presents the bibliometric 
problem of the sustainable production 
inventory model. The keywords used for this 
search are "Sustainable" and "Production" 
or "Inventory" and "Model". Fifty papers 
were collected from the Scopus database 
published in 2013-2022.  

Figure 1 presents the development of 
article publications related to the 
sustainable production inventory model. 
This result shows that this topic started to 
be published in 2013. This topic increased 
dramatically from 2020-2022, and 17 papers 
were published in 2022. 

Network Visualization of sustainable 
production inventory keywords based on 
VOSviewer is depicted in Figure 2. This 
result shows that 6 clusters were identified 
based on co-occurrence analysis. The main 
popularly used keywords are presented in 
cluster 1 (red color).  

In this cluster, the main keywords are 
sustainable inventory model and its 
derivatives, such as sustainable economic 
production quantity (EPQ), controllable 
carbon emission, deteriorating, green 
technology, and shortage.  

The second cluster (green color) includes 
a sustainable integrated inventory model, 
sustainable supply chain, controllable lead 
time, sustainable location, defective items, 
and stock levels that focus on the supply 
chain network.  

The third cluster (blue) categorizes terms 
related to the economic order quantity, 
green inventory model, supply lead time 
uncertainty, and sustainable order quantity 
inventory model that focuses on the model 
for order quantity. 

The fourth cluster in yellow is a group of 
sustainable production inventory model 
problems.  
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Figure 1.  Development of article publications related to sustainable production inventory 
model. 

 

Figure 2. Network Visualization of sustainable production inventory keyword. 

 
In this cluster, some related derivative 

keywords are investment, carbon emission, 
collaborative investment, preservation 
technology, and production inventory 
model. This cluster shows that the 
consideration of quality degradation, multi-
raw materials, and stochastic demand are 
not discussed in previous studies. The fifth 
cluster (purple color) shows the cluster 
group of sustainable supply chain inventory 
models with qualities such as imperfect 
quality, perishable products, maintenance, 
and unit quantity discount. The last cluster 
in light blue is the green inventory 
management cluster with derivatives such 
as carbon emission and trade policy. 

Finally, Figure 3 analyzes co-occurrence 
by all keywords with an overlay 
visualization. The analysis results show that 
the most used keywords between 2021 and 
2022 correspond to the green and yellow 

colors: carbon emission, sustainable 
production inventory model, defective 
items, and trade policy. 

2.2. Content Analysis and Gaps 

Based on the bibliometric analysis, 
Content Analysis, and Gaps model 
sustainable production inventory is 
explained in this section. Previous studies 
that have been conducted concerning the 
problems of the sustainable production 
inventory model are reviewed with a focus 
on the integration of production and 
inventory policies. It is pertinent to note 
that the procurement and production 
subsystems are interconnected in making 
decisions on raw material procurement and 
finished goods production. The model was 
initially proposed by Goyal (1977) and 
GoyalDeshmukh (1992) to minimize total 
costs.  
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Figure 3. Analysis of representative terms on the subject over time. 

 
Sustainability requires an integrated and 

collaborative approach in supply chain 
networks. It is also important to note that 
sustainable inventory management is one 
aspect of sustainable supply chain 
management (Becerra et al., 2021) which is 
critical and recognized as corporate social 
and environmental responsibility (Pattnaik 
et al., 2021). The previous studies that have 
been conducted on sustainable production 
inventory models are summarized in Table 
1. It was discovered that most of these 
studies focused on the complexities of 
Single Raw Material (SRM), Single Stage 
Production (SSP), and Single Product (SP).  

This means attention was generally on 
the development of economic and 
environmental models consisting of 
emission cost and fuel usage without 
consideration for the quality degradation in 
raw materials. It was also discovered that 
they mostly consider customer demand 
while deterministic and heuristic procedures 
are the popular methods applied to solve 
the problem. 

There is no present study conducted on 
the sustainable production inventory model 
that considers multiple materials, quality 
degradation, and probabilistic demand. 
Therefore, this study was conducted to fill 

this gap by proposing a new model that 
considers these indicators. The HHO 
algorithm which is classified as a 
metaheuristic procedure was also proposed 
to optimize the problems associated with 
the sustainable production inventory model. 

3.   SYSTEM CHARACTERISTICS, 
ASSUMPTIONS, NOTATIONS, AND 
PROPOSED MODEL  

3.1. System Characteristics 

The proposed model was designed to 
address the shortcomings of earlier models. 
It can represent complex real cases due to 
the inclusion of the costs for fuel, emissions, 
electricity, multi-materials, quality 
degradation, and probabilistic demand in 
the model. Moreover, Figure 4 shows the 
sustainable production inventory system 
which includes the raw material 
procurement, production, and distribution 
activities. The figure shows the process 
through which products are produced to 
meet the stochastic demands of buyers (𝐷) 
using several raw materials (𝑗) ordered from 
suppliers. It is pertinent to state the 
producers are required to order raw 
materials from suppliers 𝑚 times for each 
raw material 𝑗 (𝑚𝑗). 
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Table 1. Literature Review on the sustainable production inventory model 

Research 
Complexity-Based Classification Fuel 

cost 
Tax 
emission 

Electricity 
cost 

Demand 
Characteristic 
 

Quality 
Degradatio
n 

Optimization 
Tools SRM MRM SSP MSP SP MP 

(Fiorotto et al., 2021) - √ √ - √ - - - - Deterministic - Exact 
(Fang et al., 2016) - √ √ - √ - - - - Deterministic - Heuristic 
(Budiman & Rau, 2021) - √ - √ - √ - - - Stochastic - Heuristic 
(Omar & Zulkipli, 2018) √ - √ - √ - - - - Deterministic - Exact 
(Karabağ & Tan, 2019) √ - √ - √ - - - - Deterministic - Metaheuristic 
(Khara et al., 2020) √ - √ - - √ - - - Deterministic √ Heuristic 
(Shafiee et al., 2021) - √ √ - - √ - √ - Deterministic √ Hybrid 
(Jauhari et al., 2022) √ - √ - √ - √ - √ Stochastic - Heuristic 
(Jauhari, 2022) √ - - √ √ - √ - √ Stochastic - Heuristic 
(Mashud et al., 2022) √ - √ - √ - - - - Deterministic √ Heuristic 
(Wangsa et al., 2020) √ - √ - √ - √ - - Stochastic - Heuristic 
(Gautam et al., 2022) √ - √ - √ - - - √ Deterministic - Heuristic 
(Bhattacharjee & Sen, 2022) √ - √ - √ - √ - √ Deterministic √ Heuristic 
(Mishra et al., 2020) √ - √ - √ - √ √ - Deterministic √ Heuristic 
(Mashud et al., 2022) √ - √ - √ - √ √ - Deterministic √ Heuristic 
(De-la-Cruz-Márquez et al., 2021) √ - √ - √ - - √ - Stochastic - Heuristic 
This research (2022) - √ √ - √ - √ √ √ Stochastic √ Metaheuristic 

Where: Single Raw Material (SRM), Multi Raw Material (MRM), Single Stage Production (SSP), Multi-Stage Production (MSP), Single Product (SP), 
Multi Product (MP) 
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Figure 4. Characteristics of the sustainable production inventory model system. 

The system has different requirements 
for each raw material to produce a finished 
product. This is indicated by the fact that 
each raw material 𝑗 has a requirement 
coefficient 𝜆 (𝜆𝑗) to produce a food product. 

The system also considers the degradation 
of the quality of the raw materials over time 
to ensure appropriate optimization of those 
in the warehouse inventory.  

Moreover, the system requires that the 
producers determine the production cycle 
(𝑇), the finished goods to be sent to buyers  
in n times as well as each raw material to be 
ordered m times (𝑚𝑗). The goods are 

produced at a production rate (𝑃) which is 
more than the buyer demand (𝐷). 

3.2. Assumptions and Notations  

The assumptions made in developing the 
mathematical models to represent the 
problem are stated as follows: 
a) Demand for finished goods is 

probabilistic based on the normal 
distribution. 

b) The finished good production rate 
exceeds the product demand rate (𝑃 >
 𝐷). This is to ensure all the demands are 
met. 

c) Raw material 𝑗 has the highest quality 
(𝑄𝑚𝑎𝑥𝑗

) when it arrives in the 

warehouse for manufacturing. 

d) Each raw material is adequate to meet 
production requirements. None of the 
raw materials is also expected to expire 
during the planning period because the 
producers have complete control over 
the procurement process. 

e) There is no shortage of raw materials 
because suppliers can meet demands. 

f) The buyer's request for a shortage of 
finished goods is permitted. 

g) The quantity of raw materials ordered is 
not limited by vehicle capacity. 

h) Vehicle capacity does not limit the 
number of finished good shipments. 

 
The notation used in this model includes: 

Index 
𝑗  : index of raw materials 𝑗 = 1 … 𝑁𝑟 
Parameters 

𝑃  : production rate 
𝐷  : finished good demand  
𝑁𝑟 : number of raw materials 
𝜆𝑗 : the requirement of a finished 

good on 𝑗 raw materials 
𝑞0𝑗

 : order quantity of raw materials j 

𝑞1 : finished good delivery quantity 
𝑘𝑗 : rate of degradation quality of the 

𝑗-th raw materials per unit of time 
𝑄𝑚𝑎𝑥𝑗

 : maximum quality on 𝑗-th raw 

materials 

Raw 
material 

1

Raw 
material 

2

Raw 
material 

3

Raw 
material 

4

Raw 
material 

j

Single finish good 
product

Inventory

Buyer
Single Stage 
Production

Inventory

Raw Material finish good 

Quality 
degradation

mj, n, T

DP

λ1D

λ2D

λ3D

λ4D

λjD

m1

m2

m3

m4

mj

Raw material 
needs

Order 
Frequency 

Manufacturer

Supplier

Stochastic 
demand

EnviromentSocialEconomic

n
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𝑄𝑚𝑖𝑛𝑗
 : minimum quality on the 𝑗-th raw 

materials 
𝑄𝑗(𝑡) : quality remaining of the 𝑗-th raw 

materials in period 𝑡 
∆𝑄𝑗(𝑡) : quality degradation of the jth raw 

material until period 𝑡 
𝜏𝑚𝑎𝑥𝑗

 : duration 𝑗-th raw materials can be 

stored 
𝑐𝑙𝑜𝑠𝑠𝑗

  : loss costs quality of the 𝑗-th raw 

materials  
𝑐𝑙𝑜𝑠𝑠𝑝

 : loss sales cost of finished goods 

csale  : finished goods selling price 
𝑐0𝑗

 : purchasing cost of the 𝑗-th raw 

materials  
𝑐1 : processing cost of the finished 

good  
𝐴0𝑗

  : ordering cost of the 𝑗-th raw 

materials 
Trj : transportation costs for the 𝑗-th 

raw material  
𝑇𝑝𝑖 : finished good transportation costs   

ar𝑗  : fixed cost of transportation on the 

𝑗-th raw material  
ap : fixed costs of transportation of 

finished goods  
drj  : distance of the 𝑗-th raw material 

supplier  
dp : distance between the producer 

and the buyer 
𝐾𝑃𝐿𝑟j : kilometers per litre for the 𝑗-th 

raw material procurement unload  
𝐾𝑃𝐿𝑟∗

j : kilometers per litre for the 𝑗-th 

raw material procurement full load  
KPLp : kilometers per litre of unloading 

for delivery of finished goods  
KPLp

∗ : kilometers per litre for the 

shipment of finished goods with a 
full load  

βrj
 : fuel cost for the shipment of the 𝑗-

th raw material  
βp : fuel cost used to deliver the 

finished good 
𝜌𝑗 : emissions for 1 litre of fuel in the 

𝑗-th raw material shipment 
𝜌𝑝 : emissions for 1 litre of fuel at 

product delivery 

𝜌𝑚 : emissions for the production of 
each unit of product 

𝜌𝑠𝑚 : emissions for production setups  
𝜌𝑖𝑚 : emissions for finished goods 

inventory 
𝜌0𝑗 : emissions for the 𝑗-th raw material 

inventory 
εt : emission tax per kg 
ς𝑗 : fixed social cost of procurement 

the 𝑗-th raw material per horizon 
ςr𝑗

 : social cost of procurement the 𝑗-th 

raw material per order 
ςp : social costs of delivering the 

finished good 
ςfp : social fixed costs of manufacturing  

ςmp : the social cost of manufacturing 

once produced  
ςmi : social costs of inventory finished 

goods  
ςir𝑗

 : social cost of the 𝑗-th raw material 

inventory 
𝜖𝑠 : energy required for the 

production setup 
𝜖𝑝 : energy required to produce each 

unit 
𝜖𝑖 : energy required for storage of the 

finished good  
𝜖0𝑗 : energy required for the inventory 

of the 𝑗-th raw material  
𝐶𝜖 : energy tariff per kWh 
𝐾 : safety factor 
𝜎 : standard deviation demands 
𝑆𝑆 : safety stock 
𝐸𝐿 : estimated cost of loss sales of 

finished goods 
𝑓𝑠(𝐾) : probability density function of the 

normal distribution 
𝐹𝑠(𝐾) : cumulative distribution function of 

the normal distribution 
𝑆  : setup costs for processing the 

finished good  
𝐻0𝑗

 : inventory costs for the 𝑗-th raw 

materials 
𝐻1  : finished good inventory costs 
𝐼0𝑗

 : average inventory for the 𝑗-th raw 

materials  
𝐼1  : average finished good inventory 
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𝐿𝑗 : total costs due to degradation of 

the quality of the 𝑗-th raw materials 
𝑇𝐶0𝑗

 : total cost of the 𝑗-th raw materials 

procurement system 
𝐸𝑇𝐶1  : expected total cost of the finished 

good 
ETP  : expected total profit in the 

sustainable production Inventory 
system  

Decision Variable 
𝑚𝑗  : frequency shipment the 𝑗-th raw 

materials 
T  : production cycle time 
n  : delivery frequency of finished 

goods 

3.3. The Proposed Model of Sustainable 
Production Inventory 

The proposed model for sustainable 
production inventory problems associated 
with multi-raw materials and quality 
degradation is discussed in this section. It is 
important to note that the quality 
degradation of each raw material 𝑗 was used 
to calculate the costs incurred by the 
company due to the reduction in quality. 
Therefore, a kinetic model function was 
used in this study to formulate the 
degradation of raw material quality in the 
inventory system (Rong et al., 2011). It was 
assumed that the entire supply of raw 
materials 𝑗 (𝑞0𝑗

) was used for only 

production purposes (𝑃) during the 
procurement cycle (𝑇𝑝/𝑚𝑗). It was also 

assumed at the beginning of the filling cycle 
that the raw material quality level 𝑗 is the 
maximum level (𝑄𝑚𝑎𝑥𝑗

). Moreover, the 

degradation rate formula at time 𝑡 or 𝑄(𝑡) is 
shown in Equation (1) and the quality loss 
for raw material j for production at time t is 
presented in Equation (2). 

The raw material quality degradation was 
estimated by determining the maximum 
quality of 𝑗-th (𝑄𝑚𝑎𝑥𝑗

), achieving minimum 

quality level (𝑄𝑚𝑖𝑛𝑗
), and the 𝑗-th maximum 

duration (𝜏𝑚𝑎𝑥𝑗
). Furthermore, Equation (3) 

indicates the model of the decline rate of 

raw material 𝑗 quality in each period 𝑡. The 
linear relationship between the quality 
degradation j from period 0 (𝑄𝑚𝑎𝑥𝑗

) to 𝑡 is 

also modeled in Equation (4). The total cost 

quality reduction 𝑗 (𝐿𝑗(𝑚𝑗 , 𝑇)) during period 

𝑡 is indicated in Equation (5). 
Figure 5 shows the system profile of the 

sustainable production inventory model 
designed for the problems investigated. It 
was discovered that there are two levels of 
inventory including the finished products 
and raw materials 𝑗. For finished products, 
the raw materials are processed in the 
amount of λjP with a production time of Tp 

to meet the demand of buyers (𝐷). Where 
λj indicates the 𝑗-th raw material needed to 

have a finished product. Moreover, the 
producers are required to ensure the 
production rate (𝑃) is greater than demand 
(𝐷) and the rate of raw material 𝑗 needed 
for production is 𝜆𝑗𝑃. It is important to note 

that the proposed model estimates the 
number of finished products during the 
production cycle (𝑇) to meet demand based 
on 𝑞1 = 𝐷𝑇 with Tp = 𝐷𝑇/𝑃. The finished 

products are also poured in batches (𝑞1) 
and sent to sales with the delivery frequency 
of n times. This makes it possible to 
estimate the cycle of finished product 
orders by sales using 𝑞1/𝐷. For the raw 
material inventory, producers obtain raw 
materials from suppliers with size 𝑞0𝑗

 and 

procurement cycles 
𝑞0𝑗

𝜆𝑗𝐷
. These materials are 

subsequently sent to the producers with a 
delivery frequency of 𝑚𝑗 times. 

The demand for finished products (𝐷) in 
this problem is stochastic based on the 
normal distribution and this means it can be 
estimated using the mean 𝐷(𝑇) and the 

standard deviation 𝜎√𝑇 during the period 𝑇. 
Moreover, the average inventory was 
estimated by calculating the average 𝑇-
period inventory added with the safety stock 
(Jauhari et al., 2021; Jauhari et al., 2011). 
The safety stock formula in inventory is 
indicated in Equation (6). It is also possible 
for finished products to experience a loss of 
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sales due to stochastic demand. These lost 
sales are estimated in period 𝑇 using 
Equations (7) and (8) while the inventory for 
the finished products (𝐼1) and raw materials 
𝑗 (𝐼0𝑗

) is modelled in Equations (9) and (10). 

The proposed transportation model 
assumes that the vehicle departs to pick up 
raw materials with an empty load. 
Therefore, the model to procure raw 
materials from suppliers is presented in 
Equation (11) and the model to ship finished 
products is formulated in Equation (12). The 
costs related to raw material management 
are calculated in Equation (13) while the 
expected total cost of the finished product 
system (𝑇𝐶1(𝑛, 𝑇)) is presented in Equation 
(14). Moreover, the formula to determine 
the total revenue (𝑇𝑅(𝑛, 𝑇)) in the system is 
indicated in Equation (15). 

The Mixed-Integer Nonlinear 
Programming equation presented in 
Equation (16) is designed to predict the total 
revenue of the system under study with the 
constraints identified in Equations (17)-(19).  

The Expected Total Profit (ETP) of the 
model is shown in Equation (16) with certain 
constraints required to be satisfied during 
optimization. First, the production level 
needs to meet all the demands in Equation 
(17). Second, the production cycle 
requirement in Equation (18) needs to be 
greater than 0. Third, the constraint in 
Equation (19) ensures the delivery 
frequency of raw materials 𝑗 and finished 
products need to be an integer that is 
greater than 1. It is important to note that 
profit maximization was conducted through 
the simultaneous determination of the 
optimal decision variables including 𝑚𝑗, 𝑛, 

and 𝑇. 
 
𝑄𝑗(𝑡) = 𝑄𝑚𝑎𝑥𝑗

−  𝑘𝑗𝑡          (1) 

∆𝑄𝑗(𝑡) = 𝑄𝑚𝑎𝑥𝑗
−  𝑄𝑗(𝑡)         (2) 

𝑘𝑗 =
𝑄𝑚𝑎𝑥𝑗

−𝑄𝑚𝑖𝑛𝑗

𝜏𝑚𝑎𝑥𝑗

          (3) 

∆𝑄𝑗(𝑡) = 𝑘𝑗𝑡           (4) 

𝐿𝑗(𝑚𝑗 , 𝑇) =  𝑐𝑙𝑜𝑠𝑠𝑗

𝑚𝑗𝜆𝑗𝑃

𝑇
∫ 𝛥𝑄𝑗(𝑡)

𝜆𝑗𝐷𝑇

𝑚𝑗𝜆𝑗𝑃

0
𝑑𝑡(5) 

𝑆𝑆 = 𝐾𝜎√𝑇             (6) 

𝐸𝐿 = 𝜎√𝑇𝜓(𝐾)            (7) 

𝜓(𝐾) = (𝑓𝑠(𝐾) − 𝐾[1 − 𝐹𝑠(𝐾)])          (8) 

𝐼1 =
𝐷𝑇

2𝑛
(

𝐷

𝑃
(2 − 𝑛) + (𝑛 − 1)) +  𝐾𝜎√𝑇   (9) 

𝐼0𝑗
=

𝜆𝑗𝐷2𝑇

2𝑚𝑗𝜆𝑗𝑃
           (10) 

𝑇𝑝𝑖 = (a𝑝 + ςp) +
𝑑𝑝

𝐾𝑃𝐿𝑝
∗ (β𝑝 + 𝜌 ∗ εt) +

𝑑𝑝

𝐾𝑃𝐿𝑝−KPLp
∗

D𝑇

𝑛
(β𝑝 + 𝜌𝑝 ∗ εt)               (11) 

Trj = (ar𝑗 + ςr𝑗
) +

drj

𝐾𝑃𝐿𝑟j
(βrj

+ 𝜌𝑗 ∗ εt) +

drj

𝐾𝑃𝐿𝑟j−𝐾𝑃𝐿𝑟∗
j

𝜆𝑗𝐷𝑇

𝑚𝑗
(βrj

+ 𝜌𝑗 ∗ εt)              (12) 

𝑇𝐶0(𝑚𝑗 , 𝑇) =  ∑ (𝑐0𝑗
𝜆𝑗𝐷 + ς𝑗 + (𝐴0𝑗

+
𝑁𝑟
𝑗=1

Trj)
𝑚𝑗

𝑇
+ (𝐻0𝑗

+ ςir𝑗
+ 𝜖0𝑗 ∗ 𝐶𝜖 + 𝜌0𝑗 ∗

εt)𝐼0𝑗
+  𝑐𝑙𝑜𝑠𝑠𝑗

𝑚𝑗𝜆𝑗𝑃

𝑇
∫ 𝛥𝑄𝑗(𝑡) 𝑑𝑡

𝜆𝑗𝐷𝑇

𝑚𝑗𝜆𝑗𝑃

0
)   (13) 

𝐸𝑇𝐶1(𝑛, 𝑇) = (𝑐1 + 𝜖𝑝 ∗ 𝐶𝜖 + 𝜌𝑚 ∗ εt) ∗

𝐷 + ςfp +
(𝑆+ςmp+𝜖𝑠∗𝐶𝜖+𝜌𝑠𝑚∗εt)

𝑇
+

𝑇𝑝𝑖∗𝑛

𝑇
+

(ςmi + 𝜖𝑖 ∗ 𝐶𝜖 + 𝜌𝑖𝑚 ∗ εt  + 𝐻1)𝐼1 +
𝐸𝐿*𝑐𝑙𝑜𝑠𝑠𝑝

                                                        (14) 

𝑇𝑅(𝑛, 𝑇) = 𝑐𝑠𝑎𝑙𝑒𝐷                                       (15) 

𝐸𝑇𝑃(𝑚𝑗 , 𝑇, 𝑛) = 𝑇𝑅(𝑛, 𝑇) − (𝑇𝐶0(𝑚𝑗 , 𝑇) +

𝑇𝐶1(𝑛, 𝑇))                                                       (16) 

𝑃 ≥ 𝐷;                                                           (17) 

T > 0;                                                               (18) 

𝑚𝑗, n ≥ 1; and Integer                                 

(19) 



181 | Indonesian Journal of Science & Technology, Volume 8 Issue 2, September 2023 Hal 171-196 

DOI: https://doi.org/10.17509/ijost.v8i2.54056 

p- ISSN 2528-1410 e- ISSN 2527-8045 

 

Figure 5. System profile of the sustainable production inventory model. 
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4. PROPOSED ALGORITHM 

An HHO algorithm was proposed to 
optimize the objective function of the model 
problem through the application of the 
decision variables presented in Section 3.3. 
It is important to note that the number of 
decision variables can be calculated to solve 
the problem identified using 𝑁𝑟 + 2. This 
means the number is determined based on 
the number of raw materials used to 
manufacture a product. Heidari et al. (2019) 
introduced the HHO algorithm with two 
main behaviors which include exploration 
and exploitation as shown in Algorithm 1. 
The exploration phase involves applying the 
Harris Hawks behavior to detect rabbit prey 
as expressed in Equation (20). 

𝑋(𝐼𝑡𝑒𝑟) represents the current position 
from Harris Hawks while 𝑋(𝐼𝑡𝑒𝑟 + 1) 
indicates its position in the next iteration. 
The rabbit's position is denoted by 
𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝐼𝑡𝑒𝑟) while 𝑟1, 𝑟2, 𝑟3, and 𝑟4 are all 
random numbers in the range (0,1). 
Moreover, the upper and lower limit 
variables are denoted as 𝑈𝐵 and 𝐿𝐵, 
respectively. 𝑋𝑟𝑎𝑛𝑑(𝐼𝑡𝑒𝑟) also simulates the 
Harris Hawks selected randomly from the 
current population while Equation (21) is 
used to calculate the average position of the 
current Harris Hawks population 
(𝑋𝑚(𝐼𝑡𝑒𝑟)). 𝑋𝑖(𝐼𝑡𝑒𝑟) calculates the location 
of each Harris Hawks in the current iteration 
and 𝑁 is the total number of hawks. It was 
observed that the prey's energy (rabbit) 
decreases during the transition from 
exploration to exploitation as shown in 
Equation (22). The notation shows that 2𝐸0 
represents the rabbit's initial energy and 𝐸 
denotes the energy released by the prey 
depending on the maximum number of 
iterations (𝑇). 

It is pertinent to note that the Harris 
Hawks is exploring and experiencing 

exploitation when 𝐸0≥1. The four strategies 
associated with Harris Hawks during the 
exploitation phase include soft besiege, hard 
besiege, soft besiege with progressive rapid 
dives, and hard besiege with progressive 
rapid dives. The soft besiege behavior 
occurs when 𝑟 ≥  0.5 and |𝐸|  ≥  0.5 as 
indicated in Equations (23) and (24). 
Moreover, the ∆X (𝐼𝑡𝑒𝑟) shows the 
difference between the position vector of 
the rabbit and the current location in 𝐼𝑡𝑒𝑟 
iteration with a value of 𝐽 =  2 (1 −  𝑟5) 
while 𝑟5 describes the random numbers in 
the range (0,1). 

The hard besiege strategy occurs when 
𝑟 ≥  0 and |𝐸| < 0 as modeled in Equation 
(25). The soft besiege with progressive rapid 
dives occurs when 𝑟 < 0 and |𝐸| ≥ 0 as 
presented in Equations (26)-(29). It is 
important to note that the levy flight 
function is denoted as 𝐿𝐹, a random vector 
with size 1 𝑥 𝐷 is represented by 𝑆, and the 
problem dimensions are described as 𝐷. The 
𝐿𝐹 function can be estimated using 
Equation (28) where 𝛽 is a constant of 1.5 
while 𝑢 and 𝜈 are random values in the 
range (0.1). Hard besiege with progressive 
rapid dives occurs when 𝑟 <  0.5 and |𝐸|  <
 0.5 as modeled in Equation (30). 
Meanwhile, Y' and Z' values can be 
estimated using Equations (26) and (27). 

5. STUDY DATA AND PROCEDURES 

The data used to conduct the 
experiments include numerical examples 
from three different cases involving 
production problems that require 
small (Case 1), moderate (Case 2), and large 
numbers of raw material variations (Case 3). 
It is important to state that Case 1 focuses 
on the production problem requiring two 
raw materials, Case 2 involves five raw 
materials, and Case 3 uses ten raw 
materials. 

𝑋(𝐼𝑡𝑒𝑟 + 1) = {
𝑋𝑟𝑎𝑛𝑑(𝐼𝑡𝑒𝑟)−𝑟1|𝑋𝑟𝑎𝑛𝑑(𝐼𝑡𝑒𝑟)−2𝑟2𝑋(𝐼𝑡𝑒𝑟)|                               𝑞≥0.5

(𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝐼𝑡𝑒𝑟)−𝑋𝑚(𝐼𝑡𝑒𝑟))−𝑟3(𝐿𝐵+𝑟4(𝑈𝐵−𝐿𝐵))          𝑞<0.5
              (20) 

𝑋𝑚(𝐼𝑡𝑒𝑟) =
1

𝑁
∑ 𝑋𝑖(𝐼𝑡𝑒𝑟)𝑁

𝑖=1                     (21) 
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𝑋(𝐼𝑡𝑒𝑟 + 1) = {
𝑋𝑟𝑎𝑛𝑑(𝐼𝑡𝑒𝑟)−𝑟1|𝑋𝑟𝑎𝑛𝑑(𝐼𝑡𝑒𝑟)−2𝑟2𝑋(𝐼𝑡𝑒𝑟)|                               𝑞≥0.5

(𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝐼𝑡𝑒𝑟)−𝑋𝑚(𝐼𝑡𝑒𝑟))−𝑟3(𝐿𝐵+𝑟4(𝑈𝐵−𝐿𝐵))          𝑞<0.5
             (20) 

𝑋𝑚(𝐼𝑡𝑒𝑟) =
1

𝑁
∑ 𝑋𝑖(𝐼𝑡𝑒𝑟)𝑁

𝑖=1                     (21) 

𝐸 = 2𝐸0 (1 −
𝐼𝑡𝑒𝑟

𝑇
)                           (22) 

𝑋(𝐼𝑡𝑒𝑟 + 1) = ∆𝑋(𝐼𝑡𝑒𝑟) − 𝐸|𝐽𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝐼𝑡𝑒𝑟) − 𝑋(𝐼𝑡𝑒𝑟)|      (23) 

∆𝑋(𝐼𝑡𝑒𝑟) = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝐼𝑡𝑒𝑟) − 𝑋(𝐼𝑡𝑒𝑟)                (24) 

𝑋(𝐼𝑡𝑒𝑟 + 1) = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝐼𝑡𝑒𝑟) − 𝐸|∆𝑋(𝐼𝑡𝑒𝑟)|                 (25) 

𝑌 = 𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝐼𝑡𝑒𝑟) − 𝐸|𝐽𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝐼𝑡𝑒𝑟) − 𝑋(𝐼𝑡𝑒𝑟)|           (26) 

𝑍 = 𝑌 + 𝑆 𝑥 𝐿𝐹(𝐷)                       (27) 

𝐿𝐹(𝑥) = 0.01 𝑥 
𝑢𝑥𝜎

|𝜈|
1
𝛽

,   𝜎 = (
Γ(1+β)x sin(

𝜋𝛽

2
)

Γ(
1+𝛽

2
)x β x 2(

𝛽−1

2
)
)

1

𝛽

              (28) 

𝑋(𝐼𝑡𝑒𝑟 + 1) = {
𝑌 𝑖𝑓 𝐹(𝑌) < 𝐹(𝑋(𝐼𝑡𝑒𝑟))

𝑍 𝑖𝑓 𝐹(𝑍) < 𝐹(𝑋(𝐼𝑡𝑒𝑟))
             (29) 

𝑋(𝐼𝑡𝑒𝑟 + 1) = {
𝑌′ 𝑖𝑓 𝐹(𝑌′) < 𝐹(𝑋(𝐼𝑡𝑒𝑟))

𝑍′ 𝑖𝑓 𝐹(𝑍′) < 𝐹(𝑋(𝐼𝑡𝑒𝑟))
             (30) 

Algorithm 1. Pseudo-code of HHO algorithm 

Inputs: The population size 𝑁 and the maximum number of iterations   
Outputs: The location of the rabbit and its fitness value  
Initialize the random population Xi(i = 1,2,...,N)  
while (stopping condition is not met) do  
Calculate the fitness values of hawks = 𝑋∗ 
Set Xrabbit as the location of the rabbit (best location)  

for (each hawk (Xi)) do  
Update the initial energy E0 and jump strength J (E0=2rand()-1, J=2(1-rand()) 
Update the E using Eq. (22) ) 
if (|E|≥ 1) then (phase of exploration)  

Update the location using Eq. (20) 
 if (|E| < 1) then (phase of exploitation)  

if (r ≥0.5 and |E|≥ 0.5) then (Soft besiege Update the location vector using 
Eq. (23)) 

else if (r ≥0.5 and |E| < 0.5) then (Hard besiege Update the location vector 
using Eq. (25)) 
else if (r <0.5 and |E|≥ 0.5) then (Soft besiege with progressive rapid dives 
Update the location using Eq. (29) 
else if (r <0.5 and |E| < 0.5) then (Hard besiege with progressive rapid 
dives Update the location using Eq. (30) 

 Evaluate the rabbit position 
 Update rabbit position (𝑋∗) if there is a better solution for the population  
 𝒕 = 𝒕 + 𝟏 
Return Xrabbit 
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Data for case 1 are 𝑃=10,500, 𝐷=8,500, 
𝑁𝑟=2, 𝜆1= 4, 𝜆2=2, 𝑘1=0.1, 𝑘2=0.15, 
𝑐𝑙𝑜𝑠𝑠1

=2,000, 𝑐𝑙𝑜𝑠𝑠2
=1,000, 𝑐𝑙𝑜𝑠𝑠𝑝

=140,000, 

𝐶𝑠𝑎𝑙𝑒=140,000, 𝑐01
=12,000, 𝑐02

=15,000, 𝑐1= 

125, 𝐴01
=125, 𝐴02

=100, ar1=100, ar2=100, 

ap=700, dr1=4, dr2=6, dp=10, 𝐾𝑃𝐿𝑟1=20, 

𝐾𝑃𝐿𝑟2=20, 𝐾𝑃𝐿𝑟∗
1=18, 𝐾𝑃𝐿𝑟∗

2=18, 
KPLp=20, KPLp

∗=18, βr1
=1,000, βr1

=1,000, 

βp=1,000, 𝜌1=1.5, 𝜌2=1.2, 𝜌𝑝=1.75, 𝜌𝑚=5, 

𝜌𝑠𝑚=50, 𝜌𝑖𝑚=1.25, 𝜌01=1, 𝜌01=1.5, εt=30, 
ς1=25, ς2=25, ςr1

=25, ςr2
=25, ςp=50, 

ςfp=1500, ςmp= 70,000, ςmi=250, ςir1
=15, 

ςir2
=15, 𝜖𝑠=550, 𝜖𝑝=15, 𝜖𝑖=1, 𝜖01=0.015, 

𝜖02=0.05, 𝐶𝜖=1,444, 𝐾=1.645, 𝜎=125, 
𝑆=45,000, 𝐻01

=250, 𝐻02
=155, 𝐻1=300.  

Data for case 2 is presented as follows: 
𝑃=9,500, 𝐷=7,400, 𝑁𝑟=5, 𝜆1=2, 
𝜆2=0.1, 𝜆3=0.25, 𝜆4=0.1, 𝜆5=1, 𝑘1=0.025, 
𝑘2=0.01, 𝑘3=0.01, 𝑘4=0, 𝑘5=0, 𝑐𝑙𝑜𝑠𝑠1

=200, 

𝑐𝑙𝑜𝑠𝑠2
=100, 𝑐𝑙𝑜𝑠𝑠3

=200, 𝑐𝑙𝑜𝑠𝑠4
=0, 𝑐𝑙𝑜𝑠𝑠5

=0,  

𝑐𝑙𝑜𝑠𝑠𝑝
=80,000, 𝑐𝑠𝑎𝑙𝑒=75,000, 𝑐01

=8,000, 

𝑐02
=1,300, 𝑐03

=3,400, 𝑐04
=500, 𝑐05

=500, 

𝑐1=100, 𝐴01
=50, 𝐴02

=50, 𝐴03
=50, 𝐴04

=50, 

𝐴05
=50, ar1=20, ar2=20, ar3=20, ar4=5, 

ar5=10, ap=5,  dr1=5, dr2=2, dr3=5, dr4=7, 

dr5=1, dp=5, 𝐾𝑃𝐿𝑟1=20, 

𝐾𝑃𝐿𝑟2=20, 𝐾𝑃𝐿𝑟3=20, 𝐾𝑃𝐿𝑟4=20, 𝐾𝑃𝐿𝑟5=2, 
𝐾𝑃𝐿𝑟∗

1=19, 𝐾𝑃𝐿𝑟∗
2=19,  𝐾𝑃𝐿𝑟∗

3=19, 
𝐾𝑃𝐿𝑟∗

4=19,  𝐾𝑃𝐿𝑟∗
5=19, KPLp=20, 

KPLp
∗=18, βr1

=1,000, βr2
=1,000, 

 βr3
=1,000,  βr4

=1,000,  βr5
=1,000, 

βp=1,000, 𝜌1=0.5, 𝜌2=0.2, 𝜌3=0.02, 

𝜌4=0.001, 𝜌5=0.001, 𝜌𝑝=0.0015, 𝜌𝑚=5, 𝜌𝑠𝑚= 

1,000, 𝜌𝑖𝑚=1.25, 𝜌01=0.5,  𝜌02=0.5, 
 𝜌03=0.5, 𝜌04=0.2, 𝜌05=1, εt=30, ς1=10, 
ς2=10, ς3=10, ς4=5, ς5=5, ςr1

=10, 

ςr2
=10, ςr3

=10, ςr4
=50, ςr5

=25, ςp=10, 

ςfp=1,000, ςmp=500,000, ςmi=100, 

ςir1
=25,ςir2

=25, ςir3
=25, ςir4

=125, ςir5
=100, 

𝜖𝑠=1,000, 𝜖𝑝=20, 𝜖𝑖=1, 𝜖01=0.5, 

𝜖02=0.25, 𝜖03=0.52, 𝜖04=25, 𝜖05=15, 
𝐶𝜖=1,444, 𝐾=1.645, 𝜎=100, 𝑆=9,000,000, 
𝐻01

=150, 𝐻02
=175,  𝐻03

=150,  𝐻04
=850, 

 𝐻05
=750,  𝐻1=750. 

Furthermore, data for case 3 are 
𝑃=9,500, 𝐷=7,400, 𝑁𝑟=10, 𝜆1=2, 𝜆2=0.1, 

𝜆3=0.25, 𝜆4=0.1, 𝜆5=1, 𝜆6=2, 𝜆7=0.1, 
𝜆8=0.25, 𝜆9=0.1, 𝜆10=1, 𝑘1=0.025, 𝑘2=0.01, 
𝑘3=0.01, 𝑘4=0, 𝑘5=0, 𝑘6=0.025, 𝑘7=0.01, 
𝑘8=0.01, 𝑘9=0, 𝑘10=0, 𝑐𝑙𝑜𝑠𝑠1

=200, 𝑐𝑙𝑜𝑠𝑠2
=100, 

𝑐𝑙𝑜𝑠𝑠3
=200, 𝑐𝑙𝑜𝑠𝑠4

=0, 𝑐𝑙𝑜𝑠𝑠5
=0, 𝑐𝑙𝑜𝑠𝑠6

=200, 

𝑐𝑙𝑜𝑠𝑠7
=100, 𝑐𝑙𝑜𝑠𝑠8

=200, 𝑐𝑙𝑜𝑠𝑠9
=0, 𝑐𝑙𝑜𝑠𝑠10

=0,  

𝑐𝑙𝑜𝑠𝑠𝑝
=150,000, 𝑐𝑠𝑎𝑙𝑒=120,000, 𝑐01

=8,000, 

𝑐02
=1,300, 𝑐03

=3,400, 𝑐04
=500, 𝑐05

=500, 

𝑐06
=8,000, 𝑐07

=1,300, 𝑐08
=3,400, 𝑐09

=500, 

𝑐010
=500, 𝑐1=100, 𝐴01

=50,  𝐴02
=50,  𝐴03

=50,  

𝐴04
=50,  𝐴05

=50,  𝐴06
=50,  𝐴07

=50,  𝐴08
=50,  

𝐴09
=50,  𝐴010

=50,  ar1=20, ar2=20, ar3=20, 

ar4=5, ar5=10, ar6=20, ar7=20, ar8=20, 
ar9=5, ar10=10, ap=5, dr1=5, dr2=2, dr3=5, 

dr4=7, dr5=1, dr6=5, dr7=2, dr8=5, dr9=7, 
dr10=1,  dp=5, 𝐾𝑃𝐿𝑟1=20, 𝐾𝑃𝐿𝑟2=20, 

 𝐾𝑃𝐿𝑟3=20,  𝐾𝑃𝐿𝑟4=20,  𝐾𝑃𝐿𝑟5=20, 
𝐾𝑃𝐿𝑟6=20, 𝐾𝑃𝐿𝑟7=20,  𝐾𝑃𝐿𝑟8=20, 
 𝐾𝑃𝐿𝑟9=20,  𝐾𝑃𝐿𝑟10=20, 𝐾𝑃𝐿𝑟∗

1=19, 
𝐾𝑃𝐿𝑟∗

2=19,  𝐾𝑃𝐿𝑟∗
3=19, 𝐾𝑃𝐿𝑟∗

4=19, 
 𝐾𝑃𝐿𝑟∗

5=19, 𝐾𝑃𝐿𝑟∗
6=19, 𝐾𝑃𝐿𝑟∗

7=19, 
 𝐾𝑃𝐿𝑟∗

8=19, 𝐾𝑃𝐿𝑟∗
9=19,  𝐾𝑃𝐿𝑟∗

10=19,  
KPLp=20, KPLp

∗=18, βr1
=1,000, βr2

=1,000, 

 βr3
=1,000,  βr4

=1,000, βr5
=1,000,  

βr6
=1,000, βr7

=1,000,  βr8
=1,000, 

 βr9
=1,000,  βr10

=1,000,  βp=1,000, 𝜌1=0.5, 

𝜌2=0.2, 𝜌3=0.02, 𝜌4=0.001, 𝜌5=0.001, 
𝜌6=0.5, 𝜌7=0.2, 𝜌8=0.02, 𝜌9=0.001, 
𝜌10=0.001, 𝜌𝑝=0.0015,  𝜌𝑚=5, 𝜌𝑠𝑚= 1,000, 

𝜌𝑖𝑚=1.25, 𝜌01=0.5,  𝜌02=0.5,  𝜌03=0.5, 
𝜌04=0.2, 𝜌05=1,  𝜌06=0.5,  𝜌07=0.5, 
 𝜌08=0.5, 𝜌09=0.2, 𝜌010=1, εt=30, ς1=10, 
ς2=10, ς3=10, ς4=50, ς5=25, ς6=10, ς7=10, 
ς8=10, ς9=50, ς10=25, ςr1

=10,  ςr2
=10, 

 ςr3
=10,  ςr4

=50,  ςr5
=25, ςr6

=10,  ςr7
=10, 

 ςr8
=10,  ςr9

=50,  ςr10
=25, ςp=10, ςfp=1,000, 

ςmp=500,000, ςmi=100, ςir1
=25, ςir2

=25, 

 ςir3
=25,  ςir4

=125, ςir5
=100, ςir6

=25, 

ςir7
=25,  ςir8

=25,  ςir9
=125, ςir10

=100, 

𝜖𝑠=1,000, 𝜖𝑝=20, 𝜖𝑖=1, 𝜖01=0.5, 𝜖02=0.5, 

 𝜖03=0.5,  𝜖04=0.2,  𝜖05=1, 𝜖06=0.5, 
𝜖07=0.5,  𝜖08=0.5,  𝜖09=0.2,  𝜖010=1, 
𝐶𝜖=1,444, 𝐾=1.645, 𝜎= 100, 𝑆=9,000,000, 
𝐻01

=150, 𝐻02
=175, 𝐻03

=150, 𝐻04
=850, 

𝐻05
=750, 𝐻06

=150, 𝐻07
=175, 𝐻8=150, 

𝐻09
=850, 𝐻010

=750, 𝐻1=750. 
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The optimization experimental 
procedures conducted in this study with 
HHO used different population variations 
and iterations. Each case was optimized 
using three population variations which 
include the small, medium, and large 
iterations. A total of 100 populations and 
100 iterations (Pop 100 x Iter 100) were 
used as small variations, 250 populations 
and 250 iterations (Pop 250 x Iter 250) for 
medium, as well as 500 populations and 500 
iterations (Pop 500 x Iter 500) for large. Each 
experiment was run 30 times, thereby 
leading to 90 trials for each case and a total 
of 270 trials for the three cases. 

The quality of the solution provided by 
the proposed algorithm was benchmarked 
using ETP and computation time with the GA 
and PSO algorithms. The parameters used to 
compare the algorithms were large 
populations and iterations which include 
Pop 500 x Iter 500. In the GA algorithm, a 
crossover probability of 0.8 and mutation of 
0.8 was used while an inertia weight of 0.2 
was applied in the PSO algorithm. It is 
important to state that all the algorithms 
were decoded on MATLAB R2018a on 
Windows 10 AMD A8 with x64-64 4GB RAM. 
Moreover, the ANOVA test was used to 
determine the quality of the solution based 
on ETP and the computation time to 
compare the proposed algorithm with the 
GA and PSO algorithms. 

A sensitivity analysis was also conducted 
to examine the effect of changing variables 
on decision variables and the expectation of 
total profit. It was applied to Case 1 using 
the quality degradation rate (𝑘), the 
standard deviation of demand (𝜎), and the 
safety factor (𝐾) as variables. Each variable 
was changed with 10 different data and the 
results were recorded. 

6. RESULTS AND DISCUSSION 

6.1. Expected Total Profit (ETP) 
Optimization Using HHO 

The proposed model was developed 
based on the complex real-world situation 

which involves incorporating costs of fuel, 
emissions, electricity, multi-materials, 
quality degradation, and probabilistic 
demand. It was applied to the 
aforementioned three cases. The ETP 
optimization using HHO based on trial 
variations is summarized in Table 1.  

The experimental results showed that the 
experimental variations in Cases 1 and 2 are 
small (Pop 100 x Iter 100), medium (Pop 250 
x Iter 250), and large (Pop 500 x Iter 500), 
and they all have the same solution. This 
means the problems associated with a small 
or medium number of raw materials 
produced the same ETP without any 
difference based on population variations 
and iterations.  

However, the problems associated with a 
large number of raw materials in Case 3 
showed that only the trials of medium 
variations and large variations produced 
similar and better ETP solutions compared 
to the population variation experiment and 
small iteration. This means the optimal 
solution for Case 3 was found in the 
population experiment as well as the 
medium and large iterations. 

6.2. Computation Time on Problem-Solving 
with HHO 

The results of the computation time 
required to solve the problems using HHO 
are presented in Table 2 based on variations 
in trials and cases. It was discovered that an 
increase in the population and iterations led 
to an increment in the computation time 
needed to solve the HHO algorithm 
problems. The time was observed to reduce 
for smaller populations and iterations. The 
results from each case showed that the 
problems associated with a larger quantity 
of raw materials as indicated in Cases 1-3 
necessitate an increase in computation 
time. 
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Table 2. Computation time to solve problems using HHO (Second). 

Cases Results Pop 100 x Iter 100 Pop 250 x Iter 250 Pop 500 x Iter 500 

Case 1 

Average 56  370  1,605  
Standard deviation 4.65 30.20 35.13 

Minimum 46  273  1,557  
Maximum 64  414  1,679  

Case 2 

Average 120  777  3,141  
Standard deviation 6.25 26.14 104.81 

Minimum 107  738  2,998  
Maximum 129  821  3,305  

Case 3 

Average 360  2,010  7,615  
Standard deviation 21  85.34 174.02 

Minimum 324  1,869  7,183  
Maximum 399  2,130  7,883  

 

Table 3. Results of expected total profit optimization using HHO. 

Cases Results Pop 100 x Iter 100 Pop 250 x Iter 250 Pop 500 x Iter 500 

Case 1 

Average 164,137,878  164,137,878  164,137,878  
Standard deviation 0.00 0.00 0.00 

Minimum 164,137,878  164,137,878  164,137,878  
Maximum 164,137,878  164,137,878  164,137,878  

Case 2 

Average   14,444,202    14,444,202    14,444,202  
Standard deviation 0.00 0.00 0.00 

Minimum   14,444,202    14,444,202    14,444,202  
Maximum   14,444,202    14,444,202    14,444,202  

Case 3 

Average   76,290,250    76,387,543    76,387,543  
Standard deviation        167,177  0.00 0.00 

Minimum   75,999,721    76,387,543    76,387,543  
Maximum   76,387,543    76,387,543    76,387,543  

 

Tables 2 and 3 showed that the problems 
in Case 1 or 2 can be solved by varying 
population trials and small iterations (Pop 
100 x Iter 100). This is reasonable because 
the small population and iteration 
experiments produced solutions considered 
to be as good as those classified as medium 
and large. They also have faster 
computation times than the other variations 
and iterations. 

Medium population and iteration 
variations were also recommended to solve 
the problems in Case 3 because they 
produced similar ETP solutions with large 
variations and better than small variations. 
However, large variations require more 
computation time. 

6.3. Algorithm Comparison 

ETP and computation time for each 
algorithm were compared and presented in 
the Boxplot. The results for PSO and GA 
algorithms are listed in Tables A7 and A8 
respectively in Appendix A. Moreover, 
Figures 6-8 show a Boxplot of the ETP 
results for each algorithm in Cases 1–3. The 
solution provided to Cases 1 and 2 by the 
proposed HHO algorithm was observed to 
be as good as the PSO algorithm. However, 
the solution provided in Case 3 was found to 
be better.  

These findings were further supported by 
the ANOVA test conducted on 𝐸𝑇𝑃 as 
shown in Tables 4 and 5 where the variance 
of the 𝐸𝑇𝑃 value was found to be different 
(sig<0.05). It was discovered that HHO and 
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PSO produced the same solution (sig>0.05) 
in Cases 1 and 2 as indicated in Table 5. 
However, HHO performed better than PSO 
in Case 3 as evidenced by a sig value <0.05. 
The 𝐸𝑇𝑃 comparison results between HHO 
and GA also showed that the proposed 
model is superior in all cases.  

Figures 9-11 show a Boxplot comparison 
of Cases 1-3 in terms of computation time 
and the PSO algorithm was observed to 

have outperformed the proposed HHO and 
GA algorithms. This was supported by the 
findings of the ANOVA test in Tables 4 and 5 
that the variance values of HHO, PSO, and 
GA algorithms differ. The computation time 
was discovered to be significantly different 
as indicated by the sig value <0.05. 
Meanwhile, the HHO algorithm produced a 
better 𝐸𝑇𝑃 than PSO despite having a 
longer computation time. 

 

 

Figure 6. Boxplot of ETP results for each algorithm in Case 1. 

 

 

Figure 7. Boxplot of ETP results for each algorithm in Case 2. 

 

 

Figure 8. Boxplot of ETP results for each algorithm in Case 3. 
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Table 4. The results of the ANOVA for the expected total profit (ETP) test and computation 

time in each Case. 

Tests Anova Case 1 Case 2 Case 3 

ETP 
Nilai F 4.823 5.703 24.551 

Sig 0.010 0.005 0.000 

Computation Time 
Nilai F 1325.044 1670.116 1276.111 

Sig 0.000 0.000 0.000 

 

 

Table 5. The results of the comparison of expected total profit (ETP) and computation time 
for each algorithm in each Case 

Tests Comparing Sig Case 1 Sig Case 2 Sig Case 3 

ETP 
HHO-GA 0.023 0.012 0.000 

HHO-PSO 1.000 1.000 0.021 

PSO-GA 0.023 0.012 0.000 

Computation Time 
HHO-GA 0.000 0.000 0.000 

HHO-PSO 0.000 0.000 0.000 

PSO-GA 0.000 0.000 0.000 

 
 
 

 

Figure 9. Boxplot of computation time for each algorithm in Case 1. 

 
 

 

Figure 10. Boxplot of computation time for each algorithm in Case 2. 
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Figure 11. Boxplot of computation time for each algorithm in Case 3. 

 

6.4. Sensitivity Analysis 

The results of the sensitivity analysis 
conducted on the effect of changes in the 
rate of quality degradation (𝑘), the standard 
deviation of demand (𝜎), and the safety 
factor (𝐾) on the time of production cycle 
(𝑇) and ETP are explained. Figure 12 
depicts the effect of 𝑘 changes on 𝑇 and 
𝐸𝑇𝑃 and it was discovered that an increase 
in the rate of quality degradation (k) led to 
an increment in 𝐸𝑇𝑃 and 𝑇, and vice versa. 
Meanwhile, a change in the rate of decline 
in quality (𝑘) did not affect the decision 
variables including the frequency of ordering 
raw materials (𝑚𝑗) and delivery of finished 

products (𝑛) as indicated by the value of 1 
for both. The results further showed that an 
increase in the degradation rate (𝑘) caused 
an increment in the frequency of ordering 
raw materials in one horizon. This is 
reasonable because an increase in the rate 
of quality degradation (𝑘) is expected to 
cause a reduction in the raw material 
inventory 𝑗 because of the increase in the 
frequency with which raw materials are 
ordered (𝑚𝑗) and vice versa. 

Figure 13 shows the effects of changes in 
the standard deviation of demand (𝜎) on T 
and ETP. The findings showed that an 
increase in the standard deviation of 
demand (𝜎) led to an increment in ETP and 
T, and vice versa. Meanwhile, the change in 
demand standard deviation (𝜎) has no effect 

on the decision variables associated with 
ordering raw materials (𝑚𝑗) and shipping 

finished products (𝑛). 

The results also showed that a reduction 
in the standard deviation of demand (𝜎) led 
to a decrease in demand uncertainty which 
caused an ETP and T, and vice versa. This is 
reasonable because demand uncertainty 
usually increases with the standard 
deviation of demand (𝜎). A high uncertainty 
can cause decision-makers to increase safety 
stock and reduce T, thereby leading to high 
inventory costs and lower ETP, and vice 
versa. 

It was discovered in Figure 14 that an 
increase in the safety factor (𝐾) also led to 
an increment in 𝐸𝑇𝑃 and T, and vice versa. 
Meanwhile, the changes in the safety factor 
(K) did not affect the frequency of ordering 
raw materials (𝑚𝑗) and delivering finished 

products (𝑛). 
The findings also indicated that an 

increase in the safety factor (𝐾) increased 
the average finished product inventory, 
thereby, leading to a reduction in finished 
product lost sales (𝐸𝐿) and an enhancement 
in ETP and T. Meanwhile, a decrease in 
safety factor (𝐾) caused a reduction in the 
average finished product inventory and this 
led to an increase in 𝐸𝐿. As a result, ETP 
and T fell. This is considered reasonable 
because an increase in 𝐾 enhances the risk 
of 𝐸𝐿 and vice versa.
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Figure 12. The effect of changing k on T and ETP. 

 

 

Figure 13. The effect of changing σ on T and ETP. 

 

 

Figure 14. Effect of changes in K to T and ETP. 

 



191 | Indonesian Journal of Science & Technology, Volume 8 Issue 2, September 2023 Hal 171-196 

DOI: https://doi.org/10.17509/ijost.v8i2.54056 

p- ISSN 2528-1410 e- ISSN 2527-8045 

6.5. Managerial Insight 

The proposed model can be implemented 
in companies with a linear decline in raw 
material quality such as the agro, food, and 
pharmaceutical industries. Its 
implementation can assist managers and 
decision-makers determine production 
decisions, raw material procurement, and 
finished product delivery. Moreover, they 
can also benefit significantly from the 
findings related to ETP. 

This study proposes the HHO procedure 
for optimizing the problem of the 
sustainable production inventory model. 
The proposed algorithm outperforms the GA 
and PSO algorithms. The findings suggested 
that managers and decision-makers use a 
population of 100 and iterations of 100 to 
solve problems involving raw materials 
numbers 2 (Case small) and 5 (Case 
medium). To solve problems with ten raw 
materials (Large Case), 250 populations and 
250 iterations are recommended. The 
proposed algorithm can increase the 
company's ETP. 

It was also indicated that the degradation 
of raw materials quality affects the 
company's ETP. This is observed from the 
fact that low-quality degradation can 
improve ETP. Therefore, managers and 
decision-makers are required to consider 
several factors such as humidity, 
temperature, and storage time. It has been 
indicated that perishable raw materials are 
extremely sensitive to changes in 
temperature and humidity (Mahmood et al., 
2019). This means proper management 
needs to be implemented in the storage 
areas to slow the decline in quality (k). 
There is also the need for strict and effective 
inventory management procedures such as 
the principle of a First-In First-Out (FIFO) 
inventory system. This method is useful in 
dealing with quality degradation issues 
caused by first processing first-come, first-
served raw materials. It also has the 
potential to reduce warehouse storage time. 

The study also showed that an increase in 
the standard deviation of demand (𝜎) 
reduced 𝐸𝑇𝑃. This means managers and 
decision-makers need to effectively manage 
demand at the sales level through 
Collaborative Planning, Forecasting, and 
Replenishment (CPFR). CPFR is a method of 
demand planning and fulfillment that 
improves the efficiency of manufacturing 
and supply chain businesses (Danese, 2006) 
(Panahifar et al., 2015). It also can assist 
producers to obtain reliable demand data 
(Alptekin et al., 2017). 

An increase in the safety factor (𝐾) was 
also observed to have the ability to raise 
𝐸𝑇𝑃. Therefore, managers and decision-
makers need to decide whether to use a 
high safety factor (𝐾) when demand is 
uncertain to enhance the average inventory, 
but this can reduce the risk of 𝐸𝐿 and 𝐸𝑇𝑃. 

7. CONCLUSION 

This study proposed a sustainable 
production inventory model to maximize 
ETP with due consideration for fuel cost, 
emissions cost, electricity cost, multi-
materials, quality degradation, and 
probabilistic demand which represent 
complex real-life cases. This is to ensure the 
limitations of previous models are resolved 
in the proposed model. Moreover, a new 
HHO procedure was also proposed to 
optimize the problems associated with the 
sustainable production inventory model. 
The findings showed that the proposed HHO 
algorithm was able to optimize the 
sustainable production inventory model 
problem. It also outperformed the GA and 
PSO algorithms in ETP but has a slower 
computation time than PSO. 

The sensitivity analysis conducted also 
presented significant results such as the 
reduction in 𝐸𝑇𝑃 and time of production 
cycle (𝑇) due to the increase in the quality 
degradation rate. A similar trend was also 
recorded with the standard deviation of 
demand (𝜎) while an increase in the safety 
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factor (𝐾) was observed to have led to an 
increment in 𝐸𝑇𝑃 and 𝑇. 

The proposed study model has limitations 
that can be addressed in future 
investigations. These include the 
consideration of certain factors such as 
defective item production in the 
development of a new model in the future. 
The model also assumed the manufacturing 
process to be flawless with no product 
defects. In reality, errors in the 
manufacturing process can result in product 

defects. Therefore, further studies can be 
developed by considering the presence of 
defective items. There is also the need to 
account for the uncertainty of delivery lead 
time because the model designed in this 
study only considered demand even though 
the uncertainty for delivery lead time is 
more common in reality. It is recommended 
that the model is developed with due 
consideration for the uncertainty of the 
delivery lead time in future studies. 
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