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According to the general theory of relativiy, a black hole is 
defined as a region of spacetime with super-strong 
gravitational effects and there is nothing can escape from it. 
So in the classical theory of relativity, it is safe to say that 
black hole is a "dead" thermodynamical object. However, by 
using quantum mechanics theory, Hawking has shown that a 
black hole may emit particles. In this paper, calculation of 
temperature of an elliptical black hole when emitting the 
Dirac particles was presented. By using the complexpath 
method, radiation can be described as emission process in 
the tunneling pictures. According to relationship between 
probability of outgoing particle with the spectrum of black 
body radiation for fermion particles, temperature of the 
elliptical black hole can be obtained and it depend on the 
azimuthal angle. This result also showed that condition on 
the surface of elliptical black hole is not in thermal 
equilibrium. 
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1. INTRODUCTION 

One of the most phenomenal prediction 
from the general theory of relativity is the 
existence of black holes. A black hole is 
defined as a region of spacetime with super-
strong gravitational effects and there is 
nothing can escape from it. Therefore, if 
studying black holes use only the general 
relativity, it will lead to an image that black 
holes are "dead" thermodynamical objects, 
i.e. they do not have the temperature or 
entropy. However, in the 1970s, by using 
quantum mechanics theory, Hawking has 
shown that black holes are not “so black”. 
Black holes can radiate particles like in the 
black body radiation (Hawking, 1974; 
Hawking, 1975). 

The calculation of black hole 
temperature is a topic that has been widely 
studied in a recent decade (Tiandho, 2016; 
Ding & Liu, 2011; Triyanta & Bowaire, 2013; 
Kai & Shu-Zheng, 2009). However, mostly 
calculations just focused on the spherical 
symmetric black holes. The example of 
discussion about radiation from a non-
spherical black hole is radiation from a 
rotating black hole (Kerr-Newman black hole) 
(Ma, 2008; Li & Chen, 2015). However, 
Umetsu’s work show that calculation of 
temperature in the Kerr-Newman black hole 
can be simplified just in two dimensional 
problems (Umetsu, 2010).  

In this paper, the radiation of an elliptical 
black hole was discussed. The purpose of this 
study was to calculate the temperature of an 
elliptical black hole if it emit the Dirac 
particle. The metric used in this study is 
refered to metric that proposed by 
Nikouravan (i.e. non-rotating elliptical black 
hole) and it almost similar with the Reissner-
Nordstrom black hole (Nikouravan, et al., 
2013). To determine its temperature, the 
complexpath method was used and the 
particles emission that was analyzed is the 
Dirac particles. This method is one of the 
semiclassical methods. This method works 

according to tunneling mechanism (Siahaan 
& Triyanta, 2010). In this method, the 
wavefunction is determined by the ansatz 
according to its action, and the solution can 
be obtained through the Hamilton-Jacobi 
method. By recalling the relation between 
probability of outgoing particle with 
spectrum of black body radiation, which 
radiate fermion, the Hawking temperature 
can be calculated. 

2. METHOD 

In this paper, temperature of elliptical 
black hole if it emits the Dirac particles was 
calculated using the complex path method. 
All calculations were made using analytical 
mathematics. 

3. RESULTS AND DISCUSSION 

        In this section the results and discussion 
section is divided into several subsections, 
including review of an elliptical black hole 
and a process of the Dirac particle emission. 

3.1. Review of an elliptical black hole 

To get expression of an elliptical metric, 
Nikouravan uses the general form of static 
elliptical line element in flat Minkowski 
spacetime in spherical coordinate 
(Nikouravan & Rawal, 2011). The expression 
can be written as 

   

   

2 2 2
2 , 2 ,2 2 2

2 2

2 2 2 2 2 2 2 2

cos

cos sin

t r t r r ads e dt e dr
r a

r a d r a d

  

   

 
    
   

  (1) 

where β(t,r) and γ(t,r)  are the unknown 
function and the expression is determined 
later and a is a semi-principla axis along x and 
y axis. 

The non-zero components of 
electromagnetic field tensor is given by, 

  ,tr rtF F E r     (2) 
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where  ,E r   is the electric field as function 
r and θ,  

    2 2 2 2 2
,

sin cos
CE r

r a r


 


 
 (3) 

where C is a constant and it depend on the 
boundary condition. According to calculation 
of energy-momentum tensor and the Ricci 
tensor, the unkonwn function in equation 
Error! Reference source not found. satisfy 
condition, 

      ,t r r r      (4) 

       Thus, assuming a = 0, the metric in 
equation (1) should reduce to a spherically 
symmetric metric. In this case the Reissner-
Nordstrom metric, it leads to expression as 
(Nikouravan  et al., 2013) 
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 

 

 (5) 

       From the above metric, the horizon of 
elliptical black hole that satisfy 0rrg   and it 
can be defined as 

 2 2r M M Q      (6) 

In this paper, the horizon that located at 
r ia    was ignored since the definition is 
still disconcerting. Then, 

  
2

2

21
QMP r

r r
     (7) 

   2 2 2, cosJ r r a     (8) 

   2 2K r r a    (9) 

       The above metric can be written as 

   
     

 

2 2 2 2

2 2

,
,

sin

J r
ds P r dt dr J r d

P r K r

K r d


 

 

  



   (10) 

Unless for specific purposes, some metric 
coefficients: P(r), J(r,θ), and K(r) will be 
written as P, J and K respectively for the sake 
of brevity. 

3.2. Dirac Particles Emission 

In curved spacetime the Dirac equation 
is defined as 

 0i D
    (11) 

where D  is the covariant derivative. It can 

be defined as 1
4

ab
abD      . ab

  is the 
connection spin, which can be described as 

 1
2

ab a b a b a b b ae e e e e e e e    
                 . 

ab  corresponds to the commutator of 
Minkowskian spacetime gamma matrices, 

 ,
2ab a b
i

   . To distinguish variables that 

related with Minkowskian spacetime and 
curved spacetime, two types of indices were 
used. The latin index indicates the local 
framework (Minkowksian) and the Greek 
index indicates the variable in curved 
spacetime. The relationship between the 
Minkowskian gamma matrices with the 
curved spacetime gamma matrices is 

a
ae   . There are several expressions of 

the Minkowskian gamma matrices that 
satisfy  , 2a b ab I   . And, in this work, 

the equation can be written as 

 

3
0 1

3

1 2
2 3

1 2

0 0
; ;

0 0

0 0
; ;

0 0

i
i


 



 
 

 

  
       
   

    
   

 (12) 

where k  is the Pauli matrices. In this study, 
the non-zero components of tetrad were 
selected that satisfy a b

abg e e    as follows 
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1 1 1diag , , ,
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KPe
JP J K





 
   

 
    

(13) 

Using the tetrad, the gamma matrices in the 
elliptical spacetime can be obtained as 

3

3

1 2

1 2

0 01 ;
0 0

0 01 1;
0 0sin
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i JP
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 
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

 
 
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       

   
    

   

 

 

  (14) 

Spinor wave function ψ has two spin 
states: spin-up and spin-down thus the 
ansatz of wave function for both states can 
be expressed as 

 

 

 

0
exp , , ,

0

0

exp , , ,
0

A
i S t r

B

C i S t r

D

  
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



 
 

       
 
 
 
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       
 
 





    (15) 

where    corresponds to the spin-up and    
corresponds to the spin-down. S is its actions. 
However in this paper, just the spin-up case 
which was studied because the spin-down 
case is just analogous. The action in above 
definiton can be expanded in the order of 
Planck constant power. The expansion from 
this hypothesis can be written as 

 
   

 
0, , , , , ,

, , ,n
n n

n

S t r S t r

S t r

   
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

 
  (16) 

       For n = 1, 2, 3, ..., αn is a constants that 
keep all the expansion terms have the action 
dimension. Due to very small value of the 
Planck constant, the terms for n ≥ 1 can be 
neglected. (Siahaan & Triyanta, 2010; Kerner 
& Mann, 2008). Substituting the action 
expansion into wave function in equation 
(15) and the Dirac in equation (11), the 

solutions can be obtained. Based on this 
substitution, the expressed equations can be 
written as 

 0t r
iA KPS B S

JP
      (17) 

 0
sin

B iBS S
J K 


     (18) 

 0t r
iB KPS A S

JP
       (19) 

 0
sin

A iAS S
J K 


      (20) 

According to Hamiton-Jacobi method, 
the action can be expressed by the following 
components. Thus, the equation can be re-
expressed as 

      S Et R r           (21) 

where E is the energy, R is the radial 
component of action, Θ and Φ is component 
that correspond to azimuthal angle and polar 
angle respectively. If A and B are not zero and 
using the equations (18) and (20), the 
solution leads to a single equation. Then, the 
equation can be written as 

 
sin

i
J K 


        (22) 

       The solution of above equation can be 
obtained through integration. Therefore, the 
integration process creates, 

 
0

2
sin

i id
J K J K

 




  
       (23) 

It is clear that Θ does not depend on 
either A or B. Furthermore, equations (17) 
and (19) have two possible solutions. The 
solution can be written as 

1. For A = iB 

 r
E JR
P K

    (24) 

2. For A = -iB 

 r
E JR
P K

   (25) 
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       Thus, the correlation is 

 r
E JR
P K    (26) 

The plus sign in the above equation 
correspond to solution for outgoing particle 
and vice versa. By recalling the metric 
coefficient in equations (7)-(9), the solution 
of R can be obtained according to 
integration. Thus, the equation can be 
written as 

 
 

2 2 2

2 2

cosE r aR dr
P r r a







  (27) 

For a static black hole, its particle 
emission occurs at the event horizon. 
Therefore, metric coeffiecient P using the 
Taylor expansion can be expanded. The 
equation can be written as 

         2'h h h hP r P r P r r r O r r       (28) 

The prime sign defines the derivative 
with respect to radial coordinate r. Thus, the 
integration of the above can be solved by 
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



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 (29) 

where Elliptical Pi correspond to the third 
kind of elliptical integral (incomplete) and 
Elliptical F is the first kind of elliptical integral 
(incomplete). By applying the boundary 
condition for position around the event 
horizon, so it can be easily find out that the 
solution of R contain a variable that depends 
on θ, a and rh. Thus, by comparing the above 
radial solution of action and the radial 

solution of action for spherical symmetric 
black hole, 

 
   , ,

' h
h

iER a r
P r

     (30) 

where  , ,ha r   is an function that 
summarize all variables that depend on a, rh 
and θ. If the black hole is not too ellipse or it 

satisfy ha r� , the term 
2 2 2

2 2

cosr a
r a




 can be 
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expressed as 
   

2 2
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2

cos 1
1

2

a
O a

r

 
   and the 

integration in equation (29) can be solved as 
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


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 



 

 
   
   

 
  

 





  (31) 

From the above expression, it clear that 
the solution of R in the elliptical black hole 
depend on its azimuthal angle. For the 
spherically symmetric black hole, a = 0, the 
solution above will reduce to 

 ' hR i E P r   . This correlation is in a 
good agreement with previous calculations 
(Triyanta & Bowaire, 2013). In other words, 
for spherically symmetric case, the variable ξ 
is constant, (i.e. π). 

In the general case, the solution for Θ 
and Φ in both outgoing particle and ingoing 
particle are constant. Thus, the expression of 
action can be written as 

    2, ,
' h

h

iE iS Et a r
P r J K  


         (32) 

    2, ,
' h

h

iE iS Et a r
P r J K  


          (33) 

By recalling the spin-up wave function as 
equation (15) and if almost all ingoing 
particles are absorbed or  1inP  , the 
probability of outgoing particles leads to 

 
   4exp , ,

'out h
h

EP a r
P r

 
 

   
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 (34) 

According to the Damour-Ruffini 
method, the spectrum of Hawking radiation 
for fermion emission as 

 
1

out
B

out

P
N

P





 (35) 

where Γ is the absorptivity of black hole. 
Since the probability of ingoing particles 

1inP  , it clear that its absorptivity is equal to 
unity, Γ = 1. Therefore, by applying the 

probability of outgoing particles to equation 
(35) and by using the Boltzmann factor 
definition, the Hawking temperature for the 
elliptical black hole is 

 
 

 
'

4 , ,
h

h

P r
T

r a 



 (38) 

       From the equation above, it clear that the 
temperature does not only depend on its 
horizon but also on the semi-principal axis a 
and the azimuthal angle θ. This result is quite 
interesting. Since its temperature depend on 
its azimuthal angle, every point on the black 
hole surface may have a different 
temperature. In other words, the elliptical 
black hole does not satisfy the equilibrium 
thermal conditions. This can be understood 
based on the relationship between 
temperature of a black hole and its surface 
gravity, 2T   . Since every point in the 
surface has different distance to its center, 
the surface gravity of elliptical black hole also 
depends on θ. In addition, if the black hole 
satisfy spherically symmetric condition, ξ = π, 
its temperature will leads to  ' 4hT P r   . 

 

4. CONCLUSIONS 

By using the complexpath method, black 
hole temperature for an elliptical black hole 
due to the Dirac particles emission can be 
derived. From the result, it is clear that the 
temperature does not only depend on its 
horizon but also on the semi-principal axis 
and the azimuthal angle. The implication of 
this result is in an elliptical black hole its 
surface has heterogenous temperature or it 
does not satisfy equilibrium thermal 
condition. 
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