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A B S T R A C T   A R T I C L E   I N F O 

The multi-distributed activation energy model (multi-DAEM) is 
the most effective approach for outlining the kinetics model of 
biomass pyrolysis. The purpose of this study is to identify the 
optimal number and shape of the DAEM for sugarcane bagasse 
pyrolysis and to discuss its thermodynamic characteristics 
using the combination of multi-DAEM and differential thermal 

analysis (DTA). The heating rate of 10, 30, and 50 C/min was 
employed. The results revealed that the multi-DAEM with five 
pseudo components and Weibull distribution shape gave the 
lowest relative root mean of the squared error (RRMSE) of 
0.66% and 0.41%, respectively. Kinetic and thermodynamic 
studies showed that the 1st and 4th pseudo components which 
represent lignin, have activation energy (E0) of 189.6 and 180.6 
kJ/mol, and less endothermic or possibly exothermic 
properties. Meanwhile, the 2nd, 3rd, and 5th pseudo 
components which represent cellulose, hemicellulose, and 
moisture have activation energy (E0) of 176.1, 152.2, and 145.6 
kJ/mol, respectively, and endothermic properties.  
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  1. INTRODUCTION 
 

One of Indonesia's major sources of 
farming waste is bagasse. (Pradana et al., 
2019). Bagasse can be used as fuel in boilers 
and power generators (Ordonez-Loza et al., 
2021). It is a lignocellulosic biomass that 
Several processes (including pyrolysis) can 
convert into fuel. (Jamilatun et al., 2022; 
Pradana et al., 2019). Pyrolysis is a thermal 
decomposition without an oxidizing agent 
(air or oxygen)  (Guedes et al., 2018; Pitoyo 
et al., 2022). It is considered a superior 
method to other thermochemical 
conversions because of its versatility in 
choosing raw materials, wider temperature 

operational (300-600 C), possible operation 
at atmospheric pressure, and its ability to 
produce three valuable products (solid, 
liquid, and gas) simultaneously  (Jamilatun et 
al., 2019; Terry et al., 2021). Several 
research studies have been carried out 
related to the mechanism, operating 
parameters, and kinetics model of pyrolysis 
(Hameed et al., 2019; Kaczor et al., 2020; 
Wang et al., 2017).   

There are two fundamental mathematical 
procedures to experimentally determine the 
kinetics of biomass pyrolysis's parameters: 
model-free and model-fitting methods (Cai 
et al., 2014). The former method, also called 
the iso-conventional method, assumes that 
the conversion value affects kinetic 
parameters like the frequency factor and 
activation energy (Aboyade et al., 2011). 
This method includes Miura differential 
method, Miura-Maki integral method, 
Coats-Redfern, Flynn-Wall-Ozawa, Kissinger, 
and Kissinger-Akahira-Sunose. This method 
is easier because it only requires linear 
regression (Bonilla et al., 2019; Sukarni, 
2020; Zhao et al., 2020).  

However, it has several areas for 
improvement, such as requiring a minimum 
of three experiments with different heating 
rates and not being suitable for multiple 
reactions (Vyazovkin et al., 2011). 
Sometimes it is difficult to find conversion 

derivatives to the activation energy due to 
significant variations in conversion to the 
activation energy (Cai et al., 2014). 

The model-fitting method can be grouped 
into single-reaction and multi-reaction 
models. Multi-reaction models include the 
lumped kinetic model and DAEM. The 
lumped kinetic model assumes several 
parallel reactions, each with their individual 
activation energy. At the same time, DAEM 
assumes that the decomposition mechanism 
involves multiple independent parallel 
reactions with various activation energies 
for each reaction (see 
https://www.american.edu/sis/centers/car
bon/removal; Sonobe & Worasuwannarak, 
2008; Vyazovkin et al., 2011).  

DAEM explains the kinetics of biomass 
pyrolysis, the mechanism of thermally 
degradable materials, and complex chemical 
systems such as coal pyrolysis (Quan et al., 
2009). However, the model-fitting method is 
weak, as the obtained kinetic parameters 
provide accurate data fitting at only one 
heating rate (Várhegyi et al., 2011). 

The distributional shape of DAEM 
describes different behavior and kinetic 
mechanisms. The exact shape of the 
distribution of activation energy is unknown. 
Its shape can be grouped into two types, 
symmetrical and asymmetrical. Symmetric 
distribution shapes include Gaussian, 
Gumbel, Cauchy, and Logistic, with the 
Gaussian distribution being the most widely 
applied (Dhaundiyal & Singh, 2016; Tran et 
al., 2016). However, the Gaussian 
distribution has a weakness as it is 
symmetrical, while the actual distribution is 
asymmetrical (Burnham & Braun, 1998). 
This makes asymmetric distributions such as 
the Weibull and Gamma distributions more 
attractive to be implemented (Cai & Liu, 
2007; Kuo-Chao et al., 2009). In addition to 
the shape of the distribution, the number of 
distributions or pseudo-components is an 
important factor. It determines the accuracy 
of a simulation and the complexity of 
calculations. Too few distributions reduce 
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the accuracy of a model, while too many 
require high computational costs. Three 
distribution numbers have been broadly 
employed to describe the pyrolysis of 
biomass (Cai et al., 2014). The use of a 
distribution number of four or five has also 
been employed to describe the thermal 
decomposition of plastic waste, marine 
biomass, and also lignocellulosic biomass 
(Burra & Gupta, 2018; Kristanto et al., 2021; 
Y. Lin et al., 2019). Choosing the correct 
number and shape of the model can simplify 
the complexity of the calculations while 
increasing the prediction ability and 
accuracy of the simulations performed. 

Thermogravimetric differential thermal 
analysis (TG-DTA) is an analysis method 
generally used to study the thermal 
decomposition of biomass (Viju et al., 2018). 
TG-DTA can simultaneously calculate weight 
change and differential heat flow as a 
function of time and temperature. DTA 
measurement is based on the difference 
between the reference and sample 
temperatures. The thermodynamic 
properties of the pseudo component have a 
significant correlation with the reaction 
enthalpy profile (Kristanto et al., 2021). To 
our best knowledge, systematic 
determination of the number and shape of 
DAEM is rarely investigated, while the use of 
the relationship between multi-DAEM and 
DTA profile to explain the thermodynamic 
properties of the involved pseudo 
components has never been performed. 

This paper aims to determine the number 
and shape of the best DAEM that can 
accurately describe the decomposition 
process in bagasse pyrolysis and, at the 

same time, discuss the thermodynamic 
properties of each pseudo component 
based on the relationship between multi-
DAEM and DTA profile. 

2. METHODS 
2.1. Materials 

Bagasse was obtained from PT 
Madukismo Yogyakarta. Samples were 
washed to remove the impurities, then oven 
dried for 24 h. After drying, the sample was 
crushed and sieved to get a grain size of 60 
mesh. Table 1 lists the results of the 
proximate, ultimate, and compositional 
analyses. 

2.2. Thermogravimetric Pyrolysis 

Pyrolysis was carried out using a 
simultaneous TG-DTA Hitachi STA-200RV at 
atmospheric pressure in an inert nitrogen 
atmosphere. The sample is weighed as much 
as 6-10 mg and placed in a platinum pan, a 
small sample weight (6-10 mg) is taken to 
reduce mass and heat transfer barriers ( Y.-
C. Lin et al., 2009; Várhegyi et al., 2011). 
Constant heating rates of 10, 30, and 50 

C/min were utilized to heat the sample 

from 30 to 900C. N2 gas with high purity 
(99.99%) is flown at 100 mL/min to obtain an 
inert condition. In TG-DTA, there is a thermal 
lag at high heating rates between the 
thermocouple reading and the sample's 

actual temperature. Therefore 10 C/min 
heating rate was selected to evaluate the 
thermodynamic properties based on the 
DTA profile to minimize the occurrence of 
thermal lag (Jr & Grønli, 2003).  

Table 1. Proximate and elemental analysis of bagasse. 

Ultimate 
analysis 

Value 
(wt.%) 

Proximate 
analysis 

Value (wt.%) 
Composition 

analysis 
Value 
(wt.%) 

C 42.50 Moisture 3.83 Cellulose 45.82 
H 6.17 Volatile matter 21.95 Hemicellulose 20.20 
O 51.0 0 Fixed carbon 71.60 Lignin 21.32 
N 0.23 Ash 2.60   
S 0.10     
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2.3. Kinetic Modeling  

Kinetic modeling is important to 
determine the optimal kinetic parameters, 
pre-exponential factor (A), and activation 
energy (E). In this study, the nth-order 
reaction model and DAEM were used. The 
nth-order reaction model is shown by 
Equation [1]. 

𝛼(T) = 1 − [1 − (1 − 𝑛)∫
𝐴

𝛽
exp (−

𝐸

𝑅𝑇
)

T

T0
𝑑𝑇]

1

(1−𝑛)
  (1) 

where 𝛽  is the heating rate, T is the 
temperature at time t, T0 is the initial 
temperature, R is the universal gas constant, 
and n is the reaction order. Moreover, the 
degree of conversion is formulated by 
Equation [2]. 

𝛼(T) =
𝑚𝑖−𝑚𝑇

𝑚𝑖−𝑚𝑓
  (2) 

where mi is the initial mass of the sample, mT 
is the mass of the sample at temperature T, 
and mf is the final mass of the sample. The 
equation for single-DAEM is shown in 
Equation [3]. 

𝛼(T) = 1 − ∫ exp [−∫
𝐴

𝛽
exp(−

𝐸

𝑅𝑇
) 𝑑𝑇

T

T0
] 𝑓(𝐸)𝑑𝐸

∞

0
  (3) 

Biomass is a complex chemical material 
consisting of multiple pseudo components 
that do not interact with each other during 
the thermal decomposition process; hence, 
multi-DAEM is needed to accurately 
describe the decomposition process 

(Vyazovkin et al., 2011). To explain the 
contribution of each pseudo component, 
weighting; or contribution factor; cj was 
introduced (Kristanto et al., 2021), and the 
equation for multi-DAEM is shown in 
Equation [4]. 

𝛼(T) = 1 − ∑ 𝑐𝑗𝑁𝑑
j=1 ∫ exp [−∫

𝐴𝑗

𝛽
exp (−

𝐸

𝑅𝑇
)𝑑𝑇

T

T0
] 𝑓𝑗(𝐸)𝑑𝐸

∞

0
  (4) 

Here Nd is the number of distributions, 
and fj(E) is the distribution function or the 
shape of DAEM. In this study, seven shapes 
of DAEM were used: Gaussian, Logistic, 
Gumbel, Cauchy, Weibull, Gamma, and 
Rayleigh. Table 2 shows the distribution 
function of each DAEM. There is no exact 
analytical solution to the problem since it 
has double integrals, inner integrals dT, and 
outer integrals dE. (Mcguinness et al., 1999; 
Órfão, 2007; Tran et al., 2016). In this study, 
the temperature integral estimation 
suggested by Cai et al.  (2006) was applied to 
solve the inner integral dT and the 
trapezoidal integration rule to solve the 
outer integral dE. The pre-exponential factor 
(Aj) was determined by setting the initial 
optimization value close to the values in the 
literature, namely 1014.13, 1013.71, 1013.90, and 
1.67x1013/s for hemicellulose, cellulose, 
lignin, and unknown components, 
respectively (Várhegyi et al., 2011). The 
upper limit of outer integral dE is 500 kJ/mol 

(Güneş & Güneş, 1999).

 
Table 2. Type of distribution function used in this research. 

Distributions Distribution  Function, f(E) 
Mean  

value of E 
Standard deviation of E 

Gaussian 𝑓(E) =
1

𝜎√2π
exp [−

(𝐸−𝐸0)
2

2𝜎2
]  𝐸0 σ 

Logistic 𝑓(𝐸) =
1

4𝜎
sech

(𝐸−𝐸0)

2𝜎
  𝐸0 σ   

Gumbel 𝑓(𝐸) =
1

𝜎
exp [− (

𝐸−𝐸0

𝜎
+ exp {− (

𝐸−𝐸0

𝜎
)})]  𝐸0 σ 

Cauchy 𝑓(E) =
1

π𝜎
[1 + (

𝐸−𝐸0

𝜎
)
2
]
−1

  𝐸0 σ 

Weibull 𝑓(𝐸) =
𝑘

𝜆
(
𝐸

𝜆
)
𝑘−1

exp [− (
𝐸

𝜆
)
𝑘
]  𝜆𝛤 (1 +

1

𝑘
)  𝜆2 [𝛤 (1 +

2

𝑘
) − {𝛤 (1 +

1

𝑘
)}

2
]  

Gamma 𝑓(E) =
𝐸𝑘−1

𝛤(𝑘)𝜃𝑘
exp (−

𝐸

𝜃
)    𝑘𝜃 𝑘𝜃2 

Rayleigh 𝑓(𝐸) =
𝐸

𝜎2
exp (−

𝐸2

2𝜎2
)  𝜎√

𝜋

2
  (

4−𝜋

2
)𝜎2  
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The objective function in Equation (5) was 
minimized to achieve the kinetic 
parameters. The objective function was 
determined by summing the square errors 
between the experimental and the DAEM 
simulation data. The objective function was 
minimized using the Matlab software 
package, i.e., the fmincon function using the 
sequential quadratic programming (SQP) 
algorithm. This optimization used a 
maximum iteration of 1000 and a maximum 
function evaluation of 5000 for all 
distributed activation energy models 
(DAEM). The range of values used in the 
literature is the basis for the optimization's 
constraints (Várhegyi et al., 2011). The value 
of the E0 was taken from 100 to 350 kJ/mol, 
the standard deviation (σ) was taken from 0 
to 70 kJ/mol, the pre-exponential factor (Aj)  
was selected from 1010 to 1020/s, and the 

contribution factor (cj) was selected from 0 
to 1.   

SSE = ∑ [𝛼𝑒𝑥𝑝,𝑖(T) − 𝛼𝑚𝑜𝑑𝑒𝑙,𝑖(T)]
2𝑛𝑝

i=1   (5) 

αexp,i and αmodel,i are the degree of 
conversion of the experimental data and the 
model, respectively, and np is the number of 
data points. The quality of fitting was 
evaluated using the relative root mean of 
the square error (RRMSE) and the coefficient 
of determination (R2), as shown in Equations 
[6] and [7] (Feng et al., 2022). 

RRMSE =
√

1

𝑛𝑝
∑ [𝛼𝑒𝑥𝑝,𝑖(T)−𝛼𝑚𝑜𝑑𝑒𝑙,𝑖(T)]

2𝑛𝑝
i=1

�̅�𝑒𝑥𝑝,𝑖
× 100%  (6) 

R2 = 1−
∑ [𝛼𝑒𝑥𝑝,𝑖(T)−𝛼𝑚𝑜𝑑𝑒𝑙,𝑖(T)]

2𝑛𝑝
i=1

∑ [𝛼𝑒𝑥𝑝,𝑖(T)−�̅�𝑒𝑥𝑝,𝑖(T)]
2𝑛𝑝

i=1

  (7) 

where �̅�𝑒𝑥𝑝,𝑖(T) is the average value of the 

experimental data. Figure 1 shows the 
optimization algorithm to determine the 
optimal kinetic parameters. 

 

 

Figure 1. Kinetic parameters calculation algorithm.
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3. RESULTS AND DISCUSSION 
3.1. TG-DTA of Bagasse 

  Figure 2 presents the results of the TG-
DTA analysis of bagasse at a heating rate of 

10, 30, and 50 C/min. The heating rate 
dramatically affects the decomposition 
characteristics. Considering the TGA's 
characteristics, the high heating rate 
reduced the time needed for decomposition 
from 48.27 min at a heating rate of 10 

C/min to 17.98 and 12.09 min at 30 and 50 

C/min, respectively. On the other hand, a 
high heating rate reduced the total solids 
conversion from 97.14% at a heating rate of 

10 C/min to 89.83 and 91.48% at a heating 

rate of 30 and 50 C/min, respectively. This 
is likely because the high heating rate 
triggers a secondary decomposition reaction 
that converts volatile materials into char 
(Guedes et al., 2018). Based on the 
characteristics of DTG (Figure 2a), the peak 
temperature was moved to the right by 

increasing the heating rate from 332.58C at 

a heating rate of 10C/min to 350.87 and 

360.17C at heating rates of 30 and 50 

C/min, respectively. Based on the 
characteristics of the DTA, the high heating 
rate causes the loss of the peak appearance 
on the DTA curve. This is probably brought 
on by the thermal delay between the sample 
temperature and thermocouple measuring 
(Jr & Grønli, 2003). This suggests the use of 
low heating rates in studying biomass 
decomposition kinetics to avoid the loss of 
peaks on the DTA or DTG curves. The DTG 

curve shows a peak at 332.58 C, a shoulder 

at 300 C, and tailings at a temperature 

range of 365-550 C. The peak is associated 
with cellulose decomposition, the shoulder 
is associated with hemicellulose 
decomposition, and the tailings at the end of 
the pyrolysis temperature are associated 
with lignin decomposition.  

 

 

Figure 2. The curve of several parameters: (a) DTG at different temperatures, (b) TG-DTA at a 

heating rate of 10 C/min, (c) TG-DTA at a heating rate of 20 C/min, and (d) TG-DTA at a 

heating rate of 30 C/min. 

 

(a) 

 

(b) 

 

 (c) 

 

(d) 
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3.2. Determination Number of Distribution 

Figure 3 depicts how the number of 
distributions has an impact on fitting quality 
using five distribution numbers Gaussian. 
One Gaussian shows the most significant 
deviation among the five distribution 
numbers, and this is because of the 
limitations of one Gaussian in describing the 
multiple reactions that occur in biomass 
decomposition. Figure 3a shows that two, 
three, four, and five Gaussian provide 
overlapping data fittings. From Figure 3b, it 
can be seen clearly that the five Gaussians 
show the lowest RRMSE.   

Table 3 shows that using five Gaussian 
gives one distribution (the 3rd pseudo 
component) with a reasonably low 
contribution factor. Using a distribution 
number of more than five will result in 
several pseudo components with a relatively 
low contribution factor, which has no 
significant role in the reaction, and instead 
results in high computational complexity. 
Thus, it is not optimal. From the figure, 
moreover, it can be seen that the number of 
peaks on the DTG curve can indicate the 
number of distributions which can be used 
in the DAEM (Kristanto et al., 2021).  

 

3.3. Determination Shape of The 
Distribution 

The evaluation was performed on various 
shapes of DAEM such as Gaussian, Logistic, 
Gumbel, Cauchy, Weibull, Gamma, Rayleigh, 
and Reaction orders (non-DAEM) to obtain 
optimal conditions (providing a total RRMSE  
is minimum). 

Figure 4 shows that the Gamma, 
Rayleigh, and Reaction order models 
provide a high value of total RRMSE. 
Meanwhile, the Gaussian, Logistic, Gumbel, 
Cauchy, and Weibull models provide 
accurate results, as shown by the overlap of 
the graphs in Figure 4a and the low total 
RRMSE in Figure 4b.  

Table 3 shows a good fitting quality of the 
five models with a coefficient of 
determination ≥ 0.9998. Weibull best fits the 
five models (Kuo-Chao et al., 2009), 
characterized by the lowest RRMSE value. 
The reason is that the actual energy 
distribution in the biomass' thermal 
decomposition is asymmetrical, especially 
during the initial and final stages. Weibull 
model is an asymmetrical distribution 
model, so it can provide good fitting, 
especially at the beginning and end of the 
thermal decomposition (Cai & Liu, 2007; 
Kuo-Chao et al., 2009), as shown in Figure 6.  

 

 

Figure 3. Identification of different numbers of Gaussian DAEM: (a) fitting data model and 
(b) calculated RRMSE. 

 

(a) 

 

(b) 
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Table 3. Kinetic and statistic parameters for bagasse pyrolysis. 

Shape of 
DAEM 

Kinetics 
parameter 

Pseudo component 

1st 2nd 3rd 4th 5th 

Weibull 

c 0.2029 0.4791 0.0101 0.1375 0.1705 
E0 189.6090 176.0650 145.6006 180.6271 152.2513 
σ 16.7104 0.8478 6.0524 60.3042 1.1902 

RRMSE (%) 0.6162 
R2 1.0000 

Gaussian 

c 0.1870 0.5143 0.0465 0.1344 0.1534 
E0 190.3440 164.6107 150.0123 195.8034 162.4114 
σ 3.0611 0.3026 22.0800 7.6443 0.2139 

RRMSE (%) 0.6610 
R2 0.9999 

Logistic 

c 0.1758 0.4990 0.0660 0.1098 0.1524 
E0 190.1544 164.7257 184.1894 184.3085 162.4515 
σ 1.1206 0.1005 16.7588 3.2011 0.7639 

RRMSE (%) 0.7384 
R2 0.9999 

Gumbel 

c 0.1688 0.3754 0.0322 0.2439 0.1753 
E0 189.2224 164.0643 196.3672 169.5746 161.4599 
σ 0.2932 0.5308 16.4970 10.5493 4.4010 

RRMSE (%) 1.2104 
R2 0.9998 

Cauchy 

c 0.1821 0.4434 0.0000 0.1805 0.1510 
E0 188.8274 164.2228 199.0293 180.0004 162.3227 
σ 0.2869 0.2958 17.4544 6.0263 0.0653 

RRMSE (%) 1.1249 
R2 0.9998 

  

 

Figure 4. Identification of different shapes of multi-DAEM: (a) fitting data model and (b) 
calculated RRMSE. 

3.4. Sensitivity Analysis of DAEM Kinetic 
Parameter 

Figure 5 reveals the local sensitivity 
analysis of the parameters obtained from 
DAEM. Local sensitivity analysis is evaluated 
on specific parameters (Sciacovelli & Verda, 

2012). Sensitivity analysis is applied to 
assess the parameters' robustness in 
different input data. The x-axis shows 
deviations from optimal parameters, the y-
axis shows the kinetic parameters of DAEM, 
and the different colors in contours show 

(a) 

 

(b) 
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the RRMSE values. At the same value of x, 
the closer to the yellow area the higher the 
RRMSE value and the more sensitive.   It can 
be seen from Figure 5 that the standard 
deviation (σ) is the most sensitive parameter 
among the existing parameters, marked by 
the number of contour areas with the yellow 
color. Meanwhile, the activation energy (E0) 
and pre-exponential factor (A) have 
relatively excellent robustness. The E0 and A 
not sensitive when deviated from the 
optimal value indicated by the low value of 
RRMSE.  

3.5. Kinetic Study of Bagasse Pyrolysis 

Figure 6 shows the DTG curve formed 
from the differentiation of experimental 
TGA data and the DAEM simulation using 
five pseudo components. Matching the 
number and shape of peaks between the 
DTG experiment and the DAEM simulation is 
needed to accurately describe the kinetics of 
the decomposition reaction (Kristanto et al., 
2021).  It can be seen from Figure 6 that all 
DAEMs exhibit four major pseudo 
components (the 1st, 2nd, 4th, and 5th pseudo 
components) and one minor pseudo 
component (the 3rd pseudo component). 
Based on the Weibull model, at a 

temperature range of less than 250 C, a 
minor pseudo component (3rd pseudo 
component) was decomposed with an E0 of 
145.60 kJ/mol and a contributing factor of 
0.0101, which probably represents the 
decomposition of bound moisture and light 
volatiles.  

In the range of 215-325C, the 5th pseudo 
component decomposition occurred with an 
E0 of 152.25 kJ/mol, a standard deviation of 
1.19 kJ/mol, and a contributing factor of 
0.17, which probably represents the 
hemicellulose decomposition. In the range 

of 245-370C, the 2nd pseudo component 
decomposition occurred with an E0 of 
176.06 kJ/mol, a standard deviation of 0.85 

kJ/mol, and a contributing factor of 0.48, 
which probably represents the cellulose 
decomposition.  

In the range of 280-525 C, the 1st and 4th 
pseudo component decomposition occurred 
with E0 of 189.61 and 181.16 kJ/mol, 
standard deviations (σ) of 26.72 and 60.30 
kJ/mol, and contributing factors of 0.2029 
and 0.1375, respectively. This represents the 
decomposition of lignin and char. The 
appearance of several pseudo components 
in lignin decomposition was also reported in 
a previous study (Kristanto et al., 2021).     

Figure 7 shows the activation energy 
distribution of the five pseudo components 
during bagasse pyrolysis. The order of 
appearance of the peaks in the figure 
corresponds to the appearance of the 
pseudo components on the DTG curve. From 
the figure, the narrowest activation energy 
distribution range is seen in the 2nd pseudo 
component as reported by Huber et al., with 
an activation energy of 172-178 kJ/mol and 
a standard deviation of 0.85 kJ/mol. This 
range is included in cellulose's activation 
energy distribution range (Quan et al., 
2016). 

The distribution of the 5th pseudo 
component’s activation energy is more 
comprehensive than that of the 2nd pseudo 
component, with an activation energy 
distribution of 146-155 kJ/mol and a 
standard deviation of 1.19 kJ/mol, belonging 
to the hemicellulose distribution range (J. 
Zhang et al., 2014).  

At last, the 1st and 4th pseudo 
components have the widest distribution of 
the activation energy, in the range of 155-
200 kJ/mol, and standard deviations of 
16.71 and 60.30 kJ/mol . This indicates that 
the two components have a complex 
structure, and the decomposition arises 
over a broad temperature range, as in lignin 
decomposition (Jiang et al., 2010; Wang et 
al., 2015).  
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Figure 5. The local sensitivity analysis of multi-DAEM. 

 

Figure 6. Experimental and simulation DTG of bagasse with multi-DAEM at heating rate of 10 

C/min using: (a) Gaussian, (b) Logistic, (c) Gumbel, (d) Cauchy, (e) Weibull, and (f) Weibull 

distribution at 30 C/min. 

 

Figure 7. Activation energy distribution of multi-DAEM for pyrolysis of bagasse. 
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3.6. Thermodynamic characterization 

The DTA instrument can determine heat 
flow in the reaction based on the 
temperature difference between the sample 
and reference for a fixed amount of heat 
input (Zhang et al., 2008). The sample 
temperature remains constant for the 
endothermic reaction, so the heat flow 
(DTA) value is higher, whereas, in the 
exothermic reaction, the heat flow (DTA) 
value is lower. Using the relationship 
between DTA and the distribution of pseudo 
components in DTG, it is possible to 
understand the thermodynamic properties 

of each pseudo component and biomass 
decomposition behavior. 

Figure 8 shows the relationship between 
TGA, DTA, and multi-DAEM simulation, as 
also several stages for thermodynamic 
characterization. Each stage shows different 
temperature ranges, conversions, pseudo-
component contributions, heat flow, and 
thermodynamic properties, as shown in 

Table 4. At the temperature of 200-250 C or 
stage I of 3.7 μV, a slight increase in the DTG 
curve is accompanied by a slight increase in 
DTA value, representing the decomposition 
reaction of the 3rd pseudo component.

 

Figure 8. Comparison of TGA, DTA, and calculated DTG. 

Table 4. Thermodynamic characterization of bagasse pyrolysis. 

Stage Temperature (C) Conversion (%) 
Pseudo component 
Contribution (%)** 

Heat flow (μV ) 
Thermodynamic 

properties 

I 200-250 2.59 
2nd pseudo: 11.44 
5th pseudo: 88.56 

31-58-35.28 endothermic 

II 250-285 13.33 
2nd pseudo: 29.08 
5th pseudo: 70.92 

35.28-43.01 endothermic 

III 285-305 26.28 
2nd pseudo: 74.41 
5th pseudo: 22.46 
4th pseudo: 3.13 

43.01-51.76 endothermic 

IV 305-330 47.64 
2nd pseudo: 95.11 
4th pseudo: 4.89 

51.76-68.31 endothermic 

V 330-352 66.73 
2nd pseudo: 76.63 
4th pseudo: 23.37 

68.31-91.31 More endothermic 

V* 345-347.6 65.32 
2nd pseudo: 90.93 
4th pseudo: 9.07 

83.11-81.92 
Less endothermic/ 

possibly exothermic 

VI 352-368 71.08 
1st pseudo: 5.04 

4th pseudo: 94.96 
91.31-72.88 

Less endothermic/ 
possibly exothermic 

VII 368-430 82.80 
1st pseudo: 73.02 
4th pseudo: 26.98 

72.88-65.05 Exothermic 

VIII 430-465 91.10 1st pseudo: 100.00 65.05-72.47 Endothermic 

IX 465-550 100.00 1st pseudo: 100.00 72.47-27.86 
Less endothermic/ 

possibly exothermic 

Note: **At the final temperature of each stage
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This reaction may be related to the 
dehydration of active cellulose or bound 
moisture, which is endothermic. A sharp 
increase in DTA value of 56.03 μV occurred 

at a temperature range of 250-330 C or 
stage II-IV, after the presence of the 2nd 
pseudo component. This indicates an 
endothermic reaction during the 
decomposition of the 2nd and 5th pseudo 
components representing cellulose and 
hemicellulose, respectively. The higher 2nd 
pseudo component contribution than the 5th 
reveals the more endothermicity of the 2nd 
pseudo component. The endothermicity of 
the 2nd pseudo component is related to the 
depolymerization of cellulose. There is a 
fluctuation in the DTA value between 352-

550 C or stages VI-IX. This indicates that the 
decomposition of the 1st and 4th pseudo 
components, which represent the 
decomposition of lignin, involves 
exothermic and endothermic reactions 
(Kristanto et al., 2021; Yang et al., 2007), 
with the exothermic tendency of the 4th 

pseudo component.  
Thermodynamic parameters such as A, 

E0, enthalpy (∆H°), entropy (∆S°), and Gibbs 
free energy (∆G°) are important for 
understanding the behavior of a chemical or 
physical process (Khajehzadeh et al., 2020). 
The thermodynamic parameter is obtained 
using the equation provided by Kim et al. 
(Kim et al., 2010) at the peak temperature of 
each pseudo component because that 
temperature gives the highest reaction rate 

(Aamer et al., 2017). A high A value improves 
both the reaction rate and the frequency of 
molecular collisions. The E0 and ∆H° values 
indicate the minimum energy needed for a 
reaction and the low E0 and ∆H° values 
increase the reaction rate. A high ∆S° 
indicates a high degree of disorder which 
has implications for increasing spontaneous 
reactions, high reactivity, and increasing 
reaction rates. Meanwhile, the high ∆G° 
decreases the spontaneous reaction. 
Thermodynamic parameters of the bagasse 
pyrolysis are summarized in Table 5. 

Based on Table 5, the 3rd pseudo 
component has the lowest E0, ∆H°, and ∆G° 
values and the highest A and ∆S° values; 
hence, it has a high tendency for the 
reaction to occur spontaneously. The 5th 
pseudo component, which represents 
hemicellulose, has relatively low E0, ∆H°, and 
∆G° values and relatively high A and ∆S° 
values. Therefore, it has a relatively high 
tendency for spontaneous reactions to 
occur but is still weaker than the 3rd pseudo 
component. The 2nd pseudo component, 
which represents cellulose, has relatively 
low E0, ∆H°, and ∆G° values, while A and ∆S° 
values are relatively high. Hence, it has a 
fairly high tendency for spontaneous 
reactions to occur but is still weaker than the 
3rd and 5th pseudo components. Meanwhile, 
the 1st and 4th pseudo components, which 
represent lignin, have high E0, ∆H°, and ∆G° 
values but low A and ∆S° values, so 
spontaneous reactions have a low tendency 
to occur (Xu & Chen, 2013). 

Table 5. Thermodynamic parameters for bagasse pyrolysis. 

Pseudo 

component 
E0 (kJ/mol) A (s-1) ∆H° (kJ/mol) ∆S° (kJ/mol) ∆G° (kJ/mol) 

1st 189.609 1.09594E+13 183.472 -0.011 191.689 

2nd 176.065 1.03117E+15 171.050 0.028 153.964 

3rd 145.600 1.30756E+15 141.459 0.032 125.571 

4th 180.6271 1.08759E+14 175.155 0.009 169.296 

5th 152.251 1.04291E+14 147.611 0.01 142.072 
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4. CONCLUSION 
 

TG-DTA pyrolysis of bagasse has been 
investigated using a DAEM to determine the 
optimal number and shape of DAEM. The 
combination of DAEM and DTA can be used 
to study the thermodynamic properties of 
bagasse pyrolysis. The results show that the 
multi-DAEM with five pseudo components 
gave the lowest RRMSE of 0.66%. Based on 
the shape of the multi-DAEM, the Weibull 
distribution gives the lowest average RRSME 
value of 0.41%. Based on the kinetic and 
thermodynamic studies, the 1st and 4th 
pseudo components have E0 of 189.6 and 
180.6 kJ/mol and ∆G° of 191.7 and 169.3 
kJ/mol, representing lignin decomposition. 
The 2nd pseudo component represents 
cellulose with an E0 of 176.1 kJ/mol and ∆G° 
of 153.9 kJ/mol. The 5th pseudo component 
represents hemicellulose with an E0 of 152.2 
kJ/mol and ∆G° of 142.1 kJ/mol. The 3rd 
pseudo component represents the bound 
moisture or light volatile with an E0 of 145.6 
kJ/mol and ∆G° of 125.6 kJ/mol. The 

combination of multi-DAEM and DTA 
indicates that the thermal decomposition 
reactions in the 2nd, 3rd, and 5th pseudo 
components are endothermic, the 1st 
pseudo component is exothermic, and the 
4th pseudo component is endothermic or 
possibly exothermic.    
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