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A B S T R A C T   A R T I C L E   I N F O 

This study aims to enhance the performance of horizontal-
axis wind turbines with structurally defective blades through 
a hybrid Artificial Intelligence-driven and Genetic Algorithm-
based optimization framework. The research developed 
Artificial Neural Network and Adaptive Neuro-Fuzzy 
Inference System models to predict power output and 
vibration levels. The models were integrated into a Genetic 
Algorithm to determine optimal pitch angles and rotational 
speeds. The framework resulted in maximized power 
generation and minimized vibration. The findings 
demonstrate that the combined models outperform 
traditional methods because they capture complex nonlinear 
interactions and support real-time control. This integration 
of science and technology concepts contributes to improving 
the operational efficiency and reliability of wind turbines 
while supporting the Sustainable Development Goals 
through renewable energy advancement. 
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1. INTRODUCTION  
 
The transition towards renewable energy sources is crucial in addressing the global 

challenges of climate change, energy security, and sustainable development [1]. Among 
various renewable energy technologies, wind energy has emerged as a reliable and efficient 
solution due to its scalability and environmental benefits [2]. Horizontal-axis wind turbines 
(HAWTs) dominate the wind energy sector because of their well-established design and 
proven operational efficiency [3]. However, achieving sustained and optimal performance of 
wind turbines remains a significant engineering challenge. Turbine blades are exposed to 
harsh environmental conditions, leading to fatigue, cracks, and other structural defects that 
compromise aerodynamic performance, increase vibration, and shorten operational lifespan 
[4,5]. These defects pose critical risks to system reliability and energy output, necessitating 
advanced strategies to monitor, predict, and mitigate their impact.  

One of the main challenges in maintaining wind turbine performance lies in managing the 
trade-off between maximizing power output and controlling structural vibrations, especially 
when defects are present [6]. Table 1 presents the primary challenges encountered in HAWT 
operation, their associated details, and consequences. These challenges include structural 
integrity issues that reduce aerodynamic efficiency, vibration problems that accelerate 
component wear, complex nonlinear dynamics that complicate performance prediction, and 
the need for multi-objective optimization to balance competing operational goals [2,7]. 
Addressing these challenges requires not only advanced monitoring and predictive modeling 
but also intelligent optimization frameworks capable of adapting to dynamic operational 
conditions. 

Table 1. Challenges and their consequences in HAWT operation [2-3,7]. 

Challenges Details Significances 

Structural 

Integrity 

Blades are prone to fatigue. Leading to 

cracks and defects. 

Reduce aerodynamic efficiency and 

possible structural failure. 

Vibration Issues Structural defects cause imbalances and 

increased vibration levels. 

Accelerate component wear, 

reduce operational efficiency, and 

possible damage. 

Non-linear 

Dynamics 

Complex interactions among wind speed, 

blade pitch angles, and rotational speed. 

Difficult to predict and optimize 

turbine performance. 

Multi-objective 

Optimisation 

Managing trade-offs between power output 

and vibration levels. Need for advanced 

optimization techniques. 

Difficult to achieve both high 

efficiency and structural stability. 

This study aims to develop and validate a hybrid Artificial Intelligence-driven and Genetic 
Algorithm-based optimization framework for enhancing wind turbine performance under 
defective blade conditions. The novelty of this research lies in integrating Artificial Neural 
Networks (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) with Genetic 
Algorithms (GA) to achieve simultaneous power maximization and vibration minimization. We 
also consider the use of Quadratic Regression (QR) in this study. Unlike conventional 
regression or heuristic approaches, the proposed framework leverages computational 
intelligence to dynamically adjust turbine input parameters because it captures complex 
nonlinear interactions between variables. This innovation contributes to advancing wind 
energy technologies in support of the Sustainable Development Goals (SDGs), particularly by 
improving system reliability, extending turbine lifespan, and reducing operational costs 
through enhanced structural health management. 
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2. LITERATURE REVIEW 
 

Wind energy technology has seen significant advancements in recent years, with research 
focusing on improving the performance, reliability, and fault diagnostics of wind turbines. 
Structural defects, particularly in blades, pose one of the most critical challenges in this 
domain, as they can reduce aerodynamic efficiency, increase vibrations, and shorten the 
operational lifespan of turbines [3,4]. To address this, researchers have explored various non-
destructive testing and structural health monitoring techniques. Methods such as ultrasonic 
testing, acoustic emission monitoring, and piezoelectric impedance-based systems have 
shown promise in defect detection and condition assessment [8,9]. These studies highlight 
the need for enhanced monitoring systems capable of supporting predictive maintenance 
strategies in wind farms [10]. 

In parallel, predictive modeling approaches have been developed to forecast turbine 
performance under various operating conditions [11]. Machine learning techniques, including 
ANN and ANFIS, have demonstrated superior capabilities over traditional linear regression 
methods in capturing complex, nonlinear dynamics in wind turbine systems [12-14]. ANN 
models have been particularly effective in predicting power output, while ANFIS has shown 
strength in modeling vibration behavior due to its integration of fuzzy logic and neural 
network learning [15]. These models provide valuable tools for analyzing turbine behavior but 
are often applied in isolation without integration into broader optimization frameworks. 

Optimization techniques, especially those using GA, have been employed to enhance wind 
turbine operation by tuning parameters such as blade pitch angles and rotational speeds [16]. 
GA has proven effective in solving multi-objective problems involving power maximization 
and vibration control [17-19]. However, a notable gap in the literature is the limited 
integration of predictive modeling with optimization algorithms to simultaneously address 
performance and structural stability in turbines with defects [20,21]. This gap underscores 
the need for hybrid frameworks that combine predictive accuracy with optimization capability 
to support intelligent, adaptive control in wind energy systems. 

3. METHODS 
 

This study employed an integrated experimental and computational approach combining 
laboratory-scale testing, machine learning-based predictive modeling, and GA-based 
optimization to enhance the performance of wind turbines operating with structurally 
defective blades.  

Figure 1 presents the methodology flowchart, outlining each stage from experimental 
design to model development and optimization. The framework aimed to identify optimal 
operational parameters that would maximize power output and minimize structural 
vibrations, addressing the performance challenges associated with blade defects. 

The experimental investigation was carried out using a horizontal-axis wind turbine 
(HAWT) simulator designed by Spectra Quest. Figure 2 shows the experimental setup, which 
consisted of a three-blade rotor system mounted on a rigid steel testbed. One of the blades 
incorporated a 50 mm longitudinal crack to simulate the presence of structural defects. The 
turbine was equipped with a Variable Frequency Drive (VFD) to control rotational speed, while 
blade pitch angles (β₁, β₂, β₃) were manually adjustable. Data acquisition was performed using 
tachometers for rotational speed and accelerometers for vibration measurement. The 
vibration signals were processed through Vibra Quest (VQ) software to generate detailed 
time-domain reports. 
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Figure 1. Methodology flow chart. 

 

Figure 2. Experimental setup of the wind turbine simulator. 
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A systematic experimental design was employed to study the effects of input variables on 
power and vibration. The Taguchi L81 (3⁴) orthogonal array was used, allowing efficient 
exploration of four factors at three levels each. Table 2 details the experimental parameters 
and their corresponding levels. This design ensured balanced coverage of the parameter 
space while minimizing the number of experimental runs required. 

Table 2. Experimental parameters and levels. 

Parameter Description Levels 

β1 Blade 1 Pitch Angle 0o 15o 30o 

β2 Blade 2 Pitch Angle 0o 15o 30o 

β3 Blade 3 Pitch Angle 0o 15o 30o 

VFD Variable Frequency Drive 12Hz 15Hz 18Hz 

The collected data were used to train and validate predictive models for power output and 
vibration level. There are different Machine Learning (ML) models used for performance 
optimization. In this study, three mathematical models were selected as the most suitable 
models due to their ability to handle nonlinear relationships, adapt to varying operational 
conditions, and provide superior prediction accuracy for power output and vibration 
modelling. These models were: QR, ANN, and ANFIS. Figure 3 illustrates the ANN and ANFIS 
architectures applied in this study. Explanations are in the following: 
(i) The QR model 

It included linear, interaction, and quadratic terms, as expressed in Eq. (1). 
𝑌 = 𝑎0 + 𝑎1𝛽1 + 𝑎2𝛽2 + ⋯ + 𝑎11𝛽1

2 + 𝑎22𝛽2
2 + 𝑎33𝛽3

2 + 𝑎44𝑉𝐹𝐷2 + ⋯ + 𝑎34𝛽3𝑉𝐹𝐷      (1) 
Where, Y represents the output response (either power or vibration), and a₀, a₁, ..., a₃₄ are 
the model coefficients. This model served as a conventional baseline for evaluating machine 
learning techniques. 
(ii) The ANN model 

The ANN was selected for its capacity to capture highly nonlinear relationships. The 
network architecture included four input nodes (β₁, β₂, β₃, VFD), a hidden layer with ten 
neurons, and one output node. A single hidden neuron’s output is in Eq. (2). 

ℎ𝑖 = 𝑓(𝑤𝑗1𝛽1 + 𝑤𝑗2𝛽2 + 𝑤𝑗3𝛽3 + 𝑤𝑗4𝑉𝐹𝐷 + 𝑏𝑗)                                   (2) 

The final ANN output is in Eq. (3). 

𝑌 = ∑ 𝑣𝑗ℎ𝑗
10
𝑗=1 + 𝑏          (3)                                                          

Where, wᵢⱼ are weights, bⱼ are biases, f is the activation function, and vⱼ represents weights 
connecting hidden neurons to the output. The Levenberg-Marquardt algorithm was used for 
training, with Mean Squared Error (MSE) as the loss function. 
(iii) The ANFIS model 

The ANFIS model combines fuzzy logic and neural network learning, making it suitable for 
capturing uncertain, nonlinear, and dynamic relationships in turbine performance. The input 
parameters (β₁ and VFD) were first fuzzified into linguistic variables (e.g., low, medium, high). 
These inputs were mapped through fuzzy rules, formulated as shown in Eq. (4) and Eq. (5). 
𝑅𝑢𝑙𝑒 1: 𝐼𝑓 𝛽1 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑉𝐹𝐷 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛         𝑌1 = 𝑝1𝛽1 + 𝑞1𝑉𝐹𝐷 + 𝑟1   (4) 
𝑅𝑢𝑙𝑒 2: 𝐼𝑓 𝛽1 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑉𝐹𝐷 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛         𝑌2 = 𝑝2𝛽1 + 𝑞2𝑉𝐹𝐷 + 𝑟2   (5) 

In these rules: (a) rule 1 means that if β₁ is classified within fuzzy set A1 (e.g., low) and VFD 
is within fuzzy set B1 (e.g., low), then the output Y1 is computed by a linear function of β₁ and 
VFD with parameters p1, q1, and r1; and (b) Rule 2 means that if β₁ belongs to fuzzy set A2 (e.g., 
high) and VFD to fuzzy set B2 (e.g., high), then the output Y2 is given by its own linear function 
with parameters p2, q2, and r2. 
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The overall output of ANFIS was calculated as the weighted average of these rule outputs, 
as shown in Eq. (6). 

𝑌 =
∑ 𝑤𝑖𝑌𝑖

2
𝑖=1

∑ 𝑤𝑖
2
𝑖=1

           (6) 

Where, wᵢ are firing strengths of the rules. The ANFIS model parameters were optimized using 

a hybrid learning approach (that is combining gradient descent and least-squares methods). 

Thus, w1 and w2 are the firing strengths of Rule 1 and Rule 2, respectively determined by how 

well the input conditions match the fuzzy sets. The model was trained using a hybrid learning 

algorithm combining gradient descent (for tuning membership functions) and least squares 

(for consequent parameters).  

Model performance was evaluated using MSE and Mean Absolute Error (MAE), ensuring 

both sensitivity to outliers and overall accuracy were assessed. The best-fit models (i.e. ANN 

for power, ANFIS for vibration) were incorporated into the GA framework for multi-objective 

optimization. 

𝐹(𝑥) = −𝑃𝑜𝑤𝑒𝑟(𝑥) + 𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛(𝑥)       (7) 

The GA sought to optimize an objective function (Eq. (7)) combining negative power (to 

maximize) and vibration (to minimize). 

The x represents the input variables [β₁, β₂, β₃, VFD], and Power(x) and Vibration(x) are 

predicted outputs. 

Constraints ensured input variables stayed within experimental bounds (Eq. (8)). 

𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥          (8) 

The xmin and xmax represent the lower and upper bounds of inputs, respectively. 

The GA generated initial solutions uniformly (Eq. (9)), applied selection (Eq. (10)), crossover 

(Eq. (11)), and mutation (Eq. (12)), and iterated until convergence to the best solution (Eq. 

(13)). 

𝑥𝑖
(0)

~𝑈(𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥)          (9)                                                      

Where, U represents a uniform distribution. The selection was based on Roulette Wheel 

probability as shown in Eq. (10). 

𝑝𝑖 =
𝐹(𝑥𝑖)

∑ 𝐹(𝑥𝑖)𝑃
𝑗=1

                      (10) 

The offspring solutions were then generated using uniform crossover as shown in Eq. (11). 

𝑥𝑐ℎ𝑖𝑙𝑑 = 𝛼𝑥𝑖 + (1 − 𝛼)𝑥𝑗                   (11) 

Here, α follows a uniform distribution U(0,1). The mutation was applied as shown in Eq. 

(12). 

𝑥𝑖
𝑚𝑢𝑡𝑎𝑡𝑒𝑑 = 𝑥𝑖 + 𝛿                     (12)                                                    

The algorithm terminated when the maximum number of generations was reached, or the 

fitness improvement fell below a specified tolerance. The final optimal solution (x)* is shown 

in Eq. (13). 

𝑥∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝐹(𝑥𝑖)                                                               (13)  

That ensures optimal turbine performance under structural defects. 

Experimental validation was performed using the optimized parameters identified by GA, 

comparing predicted outputs to actual results. This ensured the accuracy of predictive models 

and demonstrated the practical applicability of the framework in managing defective turbine 

performance. 
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Figure 3. Model architectures: (a) ANN and (b) ANFIS. 

4. RESULTS AND DISCUSSION 
 

The experimental investigation aimed to assess how variations in blade pitch angles (β₁, β₂, 
β₃) and VFD settings affect the power output and vibration levels of the wind turbine 
simulator equipped with a structurally defective blade. The goal was not only to understand 
performance under defect conditions but also to evaluate the predictive capability of various 
models and the efficacy of the optimization framework in balancing power output and 
vibration control. 

4.1. Experimental Data Overview 

The data collected from 81 experimental runs using the Taguchi L81 design provided a 
comprehensive view of the turbine’s operational characteristics. The power output varied 
from 6.76 W at low rotational speeds and suboptimal pitch angles to 27.03 W at higher VFD 
values combined with optimized blade angles. Vibration levels ranged from 1.88 to 9.97 m/s², 
with higher VFDs generally increasing vibration due to elevated centrifugal forces and 
dynamic instabilities induced by the blade crack. 

The raw experimental trends revealed that at β₁ = 0°, β₂ = 0°, β₃ = 0°, increasing VFD from 
12 Hz to 18 Hz resulted in a power output increase from 12.31 W to 27.00 W, but vibration 
also rose from 2.54 to 4.95 m/s². Conversely, high pitch angles (β₁ = 30°, β₂ = 30°, β₃ = 30°) at 
18 Hz reduced power to 11.34 W and elevated vibration to 9.97 m/s² due to aerodynamic 
inefficiencies. These findings underscored the need for intelligent parameter tuning. 

4.2. Quadratic Regression (QR) Model Performance 

To model turbine performance, the QR model was first applied. Figure 4 presents residual 
plots for the QR model predictions of power output and vibration level. The residuals for 
power output were randomly scattered around zero, indicating that the QR model could 
reasonably approximate the power data. However, the residuals for vibration exhibited a 
distinct pattern, highlighting that the QR model failed to fully capture the nonlinear 
characteristics of vibration responses associated with the blade defect. 

The coefficient of determination (R²) values, summarized in Table 3, reinforced these 
observations. The QR model achieved an R² of 98.33% for power output, demonstrating high 
predictive accuracy. In contrast, the R² for vibration was only 21.11%, confirming the 
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inadequacy of QR in modeling complex vibration behavior. The regression equations for 
power output and vibration level are presented by (Eqs. (14) and (15)), respectively. 
Power output = 1.60 + 0.1461 β1 + 0.1017 β2 + 0.3216 β3 + 0.022 VFD 

− 0.002797 β12 
− 0.002139 β22 − 0.004672 β32 + 0.0775 VFD2 + 0.001739 β1×β2 
+ 0.001662 β2×β3 + 0.002117 β3×β1 − 0.01537 β1×VFD − 0.01271 β2×VFD 
− 0.02588 β3×VFD                                                                                                                  (14) 

Vibration level = −3.8 − 0.016 β1 + 0.014 β2 + 0.170 β3 + 0.87 VFD + 0.00175 β12 
+ 0.00261 β22 + 0.00054 β32 − 0.0227 VFD2 − 0.00282 β1×β2 − 0.00053 β2×β3 
− 0.00443 β3×β1 + 0.00629 β1×VFD − 0.00226 β2×VFD − 0.00976 β3×VFD (15) 

 

Figure 4. Residual plots for QR model of (a) power output and (b) vibration level. 
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Table 3. QR models’ R2 values. 

Response R2 

Power output 98.33% 

Vibration level 21.11% 

4.3. Artificial Neural Network (ANN) Model Performance 

Recognizing the limitations of QR, an ANN model was developed. Figure 5 illustrates the 
ANN’s training performance for power output, where the MSE decreased rapidly over epochs, 
indicating effective learning. The error histogram shows residual errors tightly clustered 
around zero, confirming high prediction accuracy for power. 

 

Figure 5. Performance of the ANN model for power output prediction: (a) best validation 
performance, and (b) error histogram. 
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For vibration prediction, Figure 6 shows that although the ANN reduced error during 
training, the residual errors were more dispersed compared to power output predictions. This 
suggested that while ANN effectively captured the power dynamics, vibration modeling was 
more challenging. 

 

Figure 6. Performance of the ANN model for vibration level prediction: (a) best validation 
performance, and (b) error histogram. 

Further validation is provided in Figure 7, which compares ANN-predicted outputs to 
experimental data. The regression line for power closely followed the ideal line, while for 
vibration, data points showed greater scatter, reflecting the complexity of vibration behavior 
under defective blade conditions. 

https://doi.org/10.17509/ijost.v10i3.87295


461 | Indonesian Journal of Science & Technology, Volume 10 Issue 3, Descember 2025 Hal 451-468 

DOI: https://doi.org/10.17509/ijost.v10i3.87295  

p- ISSN 2528-1410 e- ISSN 2527-8045 

 

Figure 7. ANN regression results for (a) power output and (b) vibration level. 

4.4. Adaptive Neuro-Fuzzy Inference System (ANFIS) Model Performance  

The ANFIS model was implemented to improve the prediction accuracy for vibration levels, 
where both the QR and ANN models had shown limitations. ANFIS integrates fuzzy logic’s 
capacity to handle uncertainty with neural networks’ learning ability, making it suitable for 
capturing complex, nonlinear system behavior. 

The ANFIS model was trained using the experimental dataset, with fuzzification applied to 
inputs β₁ and VFD. The fuzzy rules, as described earlier, mapped these inputs to vibration 
outputs. The model successfully learned the relationship between input variables and 
vibration response, adapting the membership functions and rule parameters during training. 

Figure 8 presents the inference surface for power output generated by the ANFIS model. 
While the model provided reasonable predictions for power, its strength was more evident in 
vibration modeling. Figure 9 shows the vibration inference surface produced by ANFIS, which 
closely aligned with the experimental vibration data across the tested input conditions. 

The ANFIS model’s superior performance for vibration prediction is reflected in its low 
mean squared error (MSE) of 6.998 × 10⁻⁶, significantly better than both the ANN and QR 
models. This result demonstrates ANFIS’s capability to handle the dynamic nonlinearities and 
uncertainties introduced by the blade’s structural defect. The model effectively captured the 
complex interplay between the blade pitch angles and rotational speed that contribute to 
vibration levels. 

The success of ANFIS in modeling vibration behavior supports previous studies [15,22], 
where neuro-fuzzy systems outperformed conventional models in predicting vibration 
responses in mechanical systems with defects or uncertain conditions. The incorporation of 
fuzzy logic enabled ANFIS to interpret ambiguous or overlapping input conditions, while its 
neural learning component adjusted the model to the specific data patterns observed in the 
wind turbine experiments. 

In summary, the ANFIS model provided a robust and reliable tool for vibration prediction, 
making it the preferred model for integration into the genetic algorithm-based optimization 
framework. 
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Figure 8. ANFIS power output model inferences. 

 

Figure 9. ANFIS vibration level model inferences. 

4.5. Comparative Model Predictions Against Experimental Data 

To provide a direct comparison of predictive accuracy across the three models (QR, ANN, 
and ANFIS), Figure 10 presents the power output predictions from each model against the 
actual experimental results. The ANN predictions closely followed the experimental data 
across the entire range of operating conditions, while the QR model showed deviations at 
higher power outputs, confirming its limitations in capturing nonlinear dynamics. The ANFIS 
predictions for power output were reasonable but not as precise as the ANN. 
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Figure 10. Comparison of power output predictions from ANN, ANFIS, and QR models 
against experimental results. 

Similarly, Figure 11 illustrates vibration level predictions compared with experimental 
measurements. The ANFIS model demonstrated excellent alignment with experimental 
vibration data, accurately capturing variations caused by changes in pitch angles and VFD. 
ANN and QR models showed larger discrepancies, particularly under conditions of higher 
vibration levels where nonlinear effects were most pronounced. 

 

Figure 11. Comparison of vibration level predictions from ANN, ANFIS, and QR models 
against experimental results. 
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4.6. Comparative Analysis 

The predictive performance of the models was compared using MSE and MAE, as 
summarized in Table 4. The ANN model achieved the lowest MSE for power output (1.44 × 
10⁻⁴), while the ANFIS model delivered the lowest MSE for vibration (6.998 × 10⁻⁶). These 
results validated the decision to use ANN for power prediction and ANFIS for vibration in the 
optimization framework. 

Table 4. Error analysis of mathematical models. 

Response Error analysis 

method 

Mathematical models 

QR ANN ANFIS 

Power output 
MSE 0.3860 1.440×10-4 4.991×10-4 

MAE 0.49573 0.012 1.7062×10-2 

Vibration level 
MSE 3.205 1.413 6.998×10-6 

MAE 1.4479 0.99498 2.2547×10-3 

4.7. Genetic Algorithm (GA) Optimization 

The final stage applied the GA to determine the optimal operating conditions that balanced 
power maximization and vibration minimization. The objective function combined these 
criteria, and the GA explored the parameter space to find the best input settings. Table 5 
presents the optimized input configuration and compares the predicted and experimental 
outputs. The GA recommended β₁ ≈ 0°, β₂ ≈ 4°, β₃ ≈ 7°, and VFD = 18 Hz. Experimental 
validation under these settings achieved a power output of 26.18 W and vibration of 5.21 
m/s², closely matching the model predictions. 

Table 5. Comparison between the genetic algorithm and experimental results. 

Method 

Input Parameters Output Parameters 

β1 β2 β3 VFD 
Power 

Output 

Vibration 

Level 

Optimization 

Framework 

0.00062o 

(≈ 0o) 

3.96495o 

(≈ 4o) 

6.61628o 

(≈ 7o) 
18 Hz 26.587W 5.763m/s2 

Experimentation 0o 4o 7o 18 Hz 26.179W 5.207m/s2 

4.8. Discussion  

The study demonstrated that machine learning models, especially ANN and ANFIS, 
significantly outperformed traditional regression methods in predicting turbine performance 
with defective blades. The integration of these models within a GA framework provided an 
effective means for multi-objective optimization, balancing power output and structural 
stability. These findings align with previous research that highlighted the strengths of AI in 
engineering optimization [15,21]. The optimized configuration not only improved power 
output but also maintained vibration within acceptable limits, demonstrating the practical 
value of the hybrid framework for real-world wind turbine applications. This approach 
supports the advancement of wind energy technologies aligned with SDGs by improving 
system reliability and reducing maintenance costs. 

4.9. Detailed Analysis of ANN Performance 

The ANN model’s success in predicting power output can be attributed to its ability to 
model complex nonlinear dependencies between the turbine’s input parameters and the 
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power generated. The low mean squared error (MSE) achieved during training, as shown in 
Figure 5, reflects that the ANN effectively captured the influence of blade pitch angle 
variations and VFD settings on power output. This result aligns with the findings of Esfahani 
& Pieper (2021) [14], who reported that ANN architectures excel in modeling wind turbine 
power under dynamic conditions. 

However, the ANN’s vibration predictions exhibited greater error variance, as observed in 
Figure 6 and Figure 7. The scatter in predicted versus actual vibration values indicates that 
while ANN could model general trends, it lacked the precision required for vibration 
prediction in the presence of structural defects. This limitation is consistent with the work of 
[23], who highlighted that ANN performance degrades when modeling outputs influenced by 
hidden dynamic factors, such as structural cracks, unless additional input features or 
specialized architectures are introduced. 

4.10. Detailed Analysis of ANFIS Performance 

The ANFIS model, in contrast, excelled in vibration prediction. The inference surfaces in 
Figure 9 illustrate how ANFIS captured the complex interplay between β₁, VFD, and vibration 
levels. The hybrid neuro-fuzzy architecture enabled ANFIS to manage uncertainties 
introduced by the defective blade, which traditional and even standard ANN models struggled 
with. The extremely low MSE (6.998 × 10⁻⁶) validated ANFIS’s suitability for tasks where 
dynamic and nonlinear uncertainties are significant. These results are in line with literature 
[22], who demonstrated the value of ANFIS in defect detection and vibration analysis for wind 
turbines. 

4.11. Discussion of GA Convergence and Optimization Behavior 

The GA optimization process displayed robust convergence toward the optimal solution. 
The population evolved consistently, with fitness values improving across generations until 
stagnation criteria were met. The use of both ANN and ANFIS models within the objective 
function allowed the GA to balance competing priorities (maximizing power while minimizing 
vibration) effectively. 

The final recommended settings (β₁ ≈ 0°, β₂ ≈ 4°, β₃ ≈ 7°, VFD = 18 Hz) were not only optimal 
in the computational sense but also practical, as they provided a configuration that could 
realistically be implemented in turbine control systems. Experimental validation showed close 
agreement between predicted and actual outputs (power difference < 0.5 W; vibration 
difference < 0.6 m/s²), which confirms the accuracy and robustness of the optimization 
framework. This supports prior research [20,21] that emphasized GA’s effectiveness for multi-
objective engineering problems. 

4.12. Practical Implications and SDG Alignment 

The study’s outcomes have clear practical relevance. The hybrid AI-GA framework offers a 
solution for real-time turbine parameter optimization, which is crucial for enhancing the 
reliability and efficiency of wind energy systems operating with aged or damaged blades. By 
reducing vibration levels while sustaining high power output, the framework contributes to 
extending turbine lifespan, reducing maintenance costs, and ensuring operational safety. 

Moreover, these contributions align with SDG 7 (Affordable and Clean Energy) by 
improving the performance of renewable energy systems. The methodology also supports 
SDG 9 (Industry, Innovation, and Infrastructure) by demonstrating innovative engineering 
solutions that integrate AI and optimization. 
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4.13. Comparison to Prior Studies 

Compared to traditional control or heuristic tuning methods, the proposed hybrid 
framework demonstrated superior performance. Traditional pitch angle tuning often relies 
on operator experience or fixed-rule adjustments, which may not adapt well to defect 
scenarios. The AI-driven framework dynamically adjusted parameters based on predictive 
models, offering a systematic and data-driven approach. The improvement over prior ANN-
only or ANFIS-only approaches lies in the hybridization: ANN handled power dynamics 
effectively, while ANFIS dealt with vibration control. This hybrid modeling integrated with GA 
outperformed single-model systems documented in earlier literature [17,19]. 

4.14. Future Directions 

While this study focused on a laboratory-scale simulator, the findings pave the way for 
scaling to full-size turbines. Future research should explore incorporating additional input 
variables, such as wind speed variability, temperature, and humidity, to further enhance 
model accuracy. Furthermore, integration with real-time supervisory control systems could 
enable continuous adaptive optimization, making this framework even more practical for 
deployment in wind farms. Finally, exploration of alternative AI architectures (e.g., ensemble 
methods, recurrent neural networks) and optimization algorithms (e.g., particle swarm 
optimization) could further advance the performance of such frameworks in wind energy 
applications. 

5. CONCLUSION 
 

This study developed and validated a hybrid Artificial Intelligence-driven and Genetic 
Algorithm-based optimization framework to enhance wind turbine performance under 
defective blade conditions. The framework integrated ANN and ANFIS models for power and 
vibration prediction with GA for multi-objective optimization. The optimal settings maximized 
power and minimized vibration, verified through experimental validation. This framework 
advances wind energy technology because it offers adaptive, data-driven control supporting 
the SDGs. The findings promote reliable, efficient renewable energy systems while reducing 
maintenance needs and operational costs. 

6. ACKNOWLEDGMENT 
 

The authors are thankful to the Faculty of Engineering at Sohar University, Sohar, Oman, 
for their guidance, technical support, and facilities provided throughout the study. 

7. AUTHORS’ NOTE  
  

The authors declare that there is no conflict of interest regarding the publication of this 
article. The authors confirmed that the paper was free of plagiarism.

8. REFERENCES 
 
[1] Bashiru, N. O., Ochem, N. C., Enyejo, N. L. A., Manuel, N. H. N. N., and Adeoye, N. T. O. 

(2024). The crucial role of renewable energy in achieving the sustainable development 
goals for cleaner energy. Global Journal of Engineering and Technology Advances, 19(3), 
011–036 

https://doi.org/10.17509/ijost.v10i3.87295


467 | Indonesian Journal of Science & Technology, Volume 10 Issue 3, Descember 2025 Hal 451-468 

DOI: https://doi.org/10.17509/ijost.v10i3.87295  

p- ISSN 2528-1410 e- ISSN 2527-8045 

[2] Veers, P., Bottasso, C. L., Manuel, L., Naughton, J., Pao, L., Paquette, J., Robertson, A., 
Robinson, M., Ananthan, S., Barlas, T., Bianchini, A., Bredmose, H., Horcas, S. G., Keller, 
J., Madsen, H. A., Manwell, J., Moriarty, P., Nolet, S., and Rinker, J. (2023). Grand 
challenges in the design, manufacture, and operation of future wind turbine systems. 
Wind Energy Science, 8(7), 1071–1131. 

[3] Jahani, K., Langlois, R. G., and Afagh, F. F. (2022). Structural dynamics of offshore wind 
turbines: A review. Ocean Engineering, 251, 111136. 

[4] Miao, X., and Chen, X. (2023). Structural transverse cracking mechanisms of trailing edge 
regions in composite wind turbine blades. Composite Structures, 308, 116680. 

[5] Shakya, P., Thomas, M., Seibi, A. C., Shekaramiz, M., and Masoum, M. (2024). Fluid-
structure interaction and life prediction of small-scale damaged horizontal axis wind 
turbine blades. Results in Engineering, 23, 102388 

[6] Al-Hinai, A., Varaprasad, K., and Kumar, V. V. (2024). Performance optimization of a wind 
turbine simulator with transverse cracked blades using taguchi-based grey relational 
analysis. Scientific Journal of King Faisal University Basic and Applied Sciences, 25(2), 42–
49 

[7] Ozturkoglu, O., Ozcelik, O., and Günel, S. (2024). Effects of operational and 
environmental conditions on estimated dynamic characteristics of a large in-service 
wind turbine. Journal Of Vibration Engineering and Technologies, 12, 803–824. 

[8] Civera, M., and Surace, C. (2022). Non-destructive techniques for the condition and 
structural health monitoring of wind turbines: A literature review of the last 20 years. 
Sensors, 22(4), 1627. 

[9] Le, T., Luu, T., Nguyen, H., Nguyen, T., Ho, D., and Huynh, T. (2022). Piezoelectric 
impedance-based structural health monitoring of wind turbine structures: current 
status and future perspectives. Energies, 15(15), 5459. 

[10] De N Santos, F., Noppe, N., Weijtjens, W., and Devriendt, C. (2024). Farm‐wide interface 
fatigue loads estimation: A data‐driven approach based on accelerometers. Wind 
Energy, 27(4), 321–340. 

[11] Yun, H., Giurcăneanu, C. D., and Dobbie, G. (2024). Several approaches for the prediction 
of the operating modes of a wind turbine. Electronics, 13(8), 1504 

[12] Bekesiene, S., Meidute-Kavaliauskiene, I., and Vasiliauskiene, V. (2021). Accurate 
prediction of concentration changes in ozone as an air pollutant by multiple linear 
regression and artificial neural networks. Mathematics, 9(4), 356 

[13] Dubchak, L., Sachenko, A., Bodyanskiy, Y., Wolff, C., Vasylkiv, N., Brukhanskyi, R., and 
Kochan, V. (2024). Adaptive neuro-fuzzy system for detection of wind turbine blade 
defects. Energies, 17(24), 6456. 

[14] Esfahani, P. S., and Pieper, J. K. (2021). Machine learning based model linearization of a 
wind turbine for power regulation. International Journal of Green Energy, 18(15), 1565–
1583 

[15] Çağıl, G., Güler, S. N., Ünlü, A., Böyükdibi, Ö., and Tüccar, G. (2023). Comparative analysis 
of multiple linear regression (mlr) and adaptive network-based fuzzy inference systems 
(anfis) methods for vibration prediction of a diesel engine containing nh3 additive. Fuel, 
350, 128686. 

[16] Khurshid, A., Mughal, M. A., Othman, A., Al-Hadhrami, T., Kumar, H., Khurshid, I., 
Arshad, N., and Ahmad, J. (2022). Optimal Pitch Angle controller for DFIG-Based wind 
turbine system using computational optimization techniques. Electronics, 11(8), 1290 

https://doi.org/10.17509/ijost.v10i3.87295


Al-Hinai et al., A Hybrid Artificial Intelligence-Driven and Genetic Algorithm-Based… | 468 

DOI: https://doi.org/10.17509/ijost.v10i3.87295  

p- ISSN 2528-1410 e- ISSN 2527-8045 

[17] González, J. S., López, B., and Draper, M. (2021). Optimal pitch angle strategy for energy 
maximization in offshore wind farms considering gaussian wake model. Energies, 14(4), 
938. 

[18] Lara, M., Garrido, J., Ruz, M. L., and Vázquez, F. (2023). Multi-objective optimization for 
simultaneously designing active control of tower vibrations and power control in wind 
turbines. Energy Reports, 9, 1637–1650. 

[19] Gajewski, P., and Pieńkowski, K. (2021). Control of the hybrid renewable energy system 
with wind turbine, photovoltaic panels and battery energy storage. Energies, 14(6), 1595 

[20] Guediri, M., Ikhlef, N., Bouchekhou, H., Guediri, A., and Guediri, A. (2024). Optimization 
by genetic algorithm of a wind energy system applied to a dual-feed generator. 
Engineering Technology and Applied Science Research, 14(5), 16890–16896. 

[21] Zorić, J. (2023). Optimizing wind farm layouts with genetic algorithms (enhancing 
efficiency in wind energy planning and utilization in bosnia and herzegovina). Academic 
Journal of Research and Scientific Publishing, 5(51), 51–73. 

[22] Dubchak, L., Sachenko, A., Bodyanskiy, Y., Wolff, C., Vasylkiv, N., Brukhanskyi, R., and 
Kochan, V. (2024). Adaptive neuro-fuzzy system for detection of wind turbine blade 
defects. Energies, 17(24), 6456. 

[23] Saleem, M., and Gutierrez, H. (2021). Using artificial neural network and non‐destructive 
test for crack detection in concrete surrounding the embedded steel reinforcement. 
Structural Concrete, 22(5), 2849–2867. 
 

 

https://doi.org/10.17509/ijost.v10i3.87295

