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A B S T R A C T   A R T I C L E   I N F O 

This study focused on the adsorption of malachite green onto 
clays in aqueous solutions. The results were simulated using 
an artificial neural network (ANN). Materials were 
characterized using X-ray fluorescence spectrometry, Fourier 
transform infrared spectroscopy, X-ray diffraction, and 
nitrogen adsorption at 77 K. Sorption experiments were 
carried out in the discontinuous mode, examining the 
influences of contact time, adsorbent dose, solution pH, 
initial concentration, and temperature. The neural network 
topology was 4–10-1. The results predicted by this model 
show a good agreement with experimental data. The 
mathematical modelling of the obtained isotherms revealed 
that the Freundlich isotherm model is perfectly consistent 
with the experimental data. The thermodynamic 
parameters, such as the changes in Gibbs free energy, 
enthalpy, and entropy, are determined. The MG adsorption 
is physical, spontaneous, and exothermic for both 
adsorbents. This method, therefore, appears as an effective 
means to achieve the objectives of sustainable development 
of the United Nations. 
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1. INTRODUCTION  
 
Organic dyes play an important role in various applications and are therefore responsible 

for toxic pollution of the environment. These releases of synthetic organic dyes pose a great 
problem for the environment and human health as they are not biodegradable for the most 
part [1-3]. Among the different types of dyes, Malachite Green (MG) is used in the textile 
industry to color leather, silk, wool, jute, pottery, cotton, acrylic fibers, and paper.  It is a 
carcinogenic, mutagenic, and teratogenic substance, and it has been identified as a liver 
tumor promoter [4]. MG is light stable and poorly biodegradable, making it difficult to remove 
from aqueous solutions by current water purification/treatment methods. Among all the used 
methods, adsorption has become the most desirable technique because of its advantages in 
terms of low cost, ease of use, simplicity of design, and insensitivity to toxic pollutants [5]. In 
this context, many adsorbents have been used to remove these dyes from water, including 
activated carbon [6], zeolite [7,8], graphene [9], silica [10], metal-organic frameworks [11], 
and clays [12]. In addition, numerous studies have extensively explored the use of crude and 
or modified clays for the adsorption of organic dyes due to their cost-effectiveness, 
abundance in nature, and high efficiency. Among all these clays, bentonite has gained 
significant recognition as an effective adsorbent. Despite the good performance of bentonite 
in the adsorption of organic dyes, experimental data remain, however, long and costly. 
Artificial neural network (ANN) is a powerful artificial intelligence approach in modeling and 
predicting data and has been gaining interest in the investigation of adsorption processes 
[13]. In this context, the ANN with 10 hidden 10-hidden-layer neuron combination to predict 
the adsorption performance of almond peel waste as a sorbent against malachite green and 
were able to obtain a remarkable coefficient of determination (R2) value of 0.976 [14]. Wang 
et al. (2024) [15] employed the ANN to predict the adsorption performance of ZIF-67 on 
malachite green, with a remarkable R2 of 0.9882 and mean square error (MSE) of 0.0009. 
Parsazadeh et al. (2018) [16] used the ANN with 6 hidden layer neurons to predict the 
adsorption efficiency of both eosin yellow (EY) and malachite green (MG) dyes in binary 
aqueous solution onto the monolithic HKUST-1 MOF. Corresponding R2 values of 0.9974 and 
0.9963 and MSE values of 1.75×10-5 and 7.43×10-5 were obtained for the MG and EY models, 
respectively. To date, there is no report on the use of ANN to predict malachite green 
adsorption performance on clays.  

In this context, this present work aims to investigate the adsorption of MG from aqueous 
solutions onto both local Algerian bentonite and another commercial clay. The effects of 
different parameters that can influence the elimination percentage of MG, in aqueous 
solutions, were studied through several adsorption tests in discontinuous systems. Indeed, 
these parameters can be expressed as a major problem where there could be a complex 
relationship between the inputs (contact time, solution pH, adsorbent dose, MG initial 
concentration, and temperature) and outputs (removal percentage). Under such conditions, 
the application of ANN appears to be the most useful method in the interpretation of 
optimum parameters favoring the best sorption of MG molecules on the used sorbent clays. 

ANN appears effective since it offers predictive data, estimates, and opportunities in the 
treatment of dye rejections with high precision. Its techno-economic value as well as its cost 
estimate allow it to contribute to the sustainable development goals, in particular goal 6 on 
access to water and sanitation. Thus, it contributes to the improvement of water quality by 
reducing its pollution and minimizing the release of dangerous chemicals. 
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2. METHODS 
2.1. Material and Chemicals 

The raw bentonite used in this study was extracted from Maghnia deposits in western 
Algeria. Initially, it was purified according to the method previously reported [17]. The 
adsorptive properties of the resulting fraction < 2 µm, which is designated “local Algerian 
bentonite’’ were compared to those of a commercial bentonite.  

The MG dye (chemical formula C23H25ClN2, molecular weight = 364.911 g/mol, λmax = 617 
nm, solubility in water = 40 g/L, pKa1 = 1.3 and pKa2 ≈ 12.5), as well as chemicals (NaOH, 
H2SO4) and commercial bentonite with the highest purity available were obtained from 
Biochem Chemopharma company, France and used as received. All the solutions were 
prepared using distilled water. The chemical structure of the MG is shown in Figure 1. 

 

Figure 1. Molecular structure of MG. 

2.2. Characterization Methods 

Chemical composition of the samples was determined by X-ray fluorescence spectrometry 
(PHILIPS-PW2404 Pananalytical, Magix-Pro model) of 4 KW of power equipped with logging 
data software. Semiquantitative measurements were made with the Ommian application 
using 27 mm sample holders with a full range measurement sweep. The Fourier transform 
infrared (FTIR) spectra of the samples were obtained using a SPECTRUM TWO spectrometer 
(Perkin Elmer, Inc.). ZnSe (550–6000 cm−1) and KBr (350–8300 cm−1) pellets were used in 
transmission mode for this. The XRD study was obtained using a diffractometer (PHILIPS, PW-
1711) equipped with CuKα radiation (l = 0.15404 nm).  Using nitrogen as the sorbate gas at 
77 K, the textural qualities were measured using a Quantachrome Quadrasorb SI system. The 
samples were outgassed for 18 hours at 373 K under a high vacuum (10-2 Torr). Total specific 
surface areas were calculated using the multipoint BET method.   

2.3. Adsorption Experiments 

The various adsorption tests were carried out in discontinuous mode. The effect of contact 
time, ranging from 1 to 60 min, was examined in several mixtures of 25 mg of commercial 
bentonite or local Algerian bentonite in 25 mL of MG solution with an initial concentration of 
100 mg/L in flasks. The whole is subjected to the same agitation of 150 rpm in a shaker 
(Memmert). These mixtures were then centrifuged at 2000 rpm for 15 minutes to separate 
the two phases and recover the solid phases corresponding to the saturated adsorbents. All 
obtained supernatants were analyzed by UV–Vis spectrophotometer (Genesys-10 UV) at the 
maximum absorption wavelength of MG (λmax = 617 nm).  

The MG concentrations of different samples were determined by extrapolation on the 
calibration curve obtained previously by plotting the absorbance values as a function of the 
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MG concentration. The removal percentages of the MG were calculated according to the 
following Eq. (1): 

𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =  
(𝐶𝑜−𝐶𝑒)

𝐶𝑜
× 100       (1) 

Where, 𝐶𝑜 and 𝐶𝑒 (mg/L) are the concentrations of MG at the initial and equilibrium states, 
respectively.  

The effect of adsorbent dose was investigated using various amounts (ranging from 5 to 
50 mg) of commercial bentonite or local Algerian bentonite that has been dispersed into 25 
mL of MG solution with an initial concentration of 100 mg/L. Each dispersion was shaken for 
5 min at ambient temperature (25 ± 1°C). The effect of pH on the adsorption was examined 
by adjusting the pH of different suspensions between 2 and 10. A series of mixtures (30 mg 
of local Algerian bentonite or 15 mg of commercial bentonite) and 25 mL of MG solutions with 
an initial concentration of 100 mg/L) were stirred at 150 rpm for 5 min. The pH of MG 
solutions was adjusted using a few drops of H2SO4 (0.1 mol/L) or a few drops of NaOH (0.1 
mol/L) aqueous solutions, and the corresponding values were measured using a pH meter 
(Basic 20). The effect of MG initial concentration was carried out by mixing a series of 30 mg 
of local Algerian bentonite or 15 mg of commercial bentonite in a series of 25 mL of MG 
solutions at different concentrations (from 4 to 200 mg/L) during the contact time under 
agitation for 5 min at the natural pH of the solutions (pH = 7). The effect of temperature was 
examined by MG adsorption at different temperatures (20, 30, 40, and 50°C) at natural pH 
(pH = 7) of the solutions, 30 mg of local Algerian bentonite or 15 mg of commercial bentonite 
as adsorbent mass, and 5 min as contact time.  

2.4. Artificial Neural Network (ANN) 

The ANN model was used to simulate the adsorption process of commercial bentonite and 
local Algerian bentonite on malachite green dye. The ANN structure principally consists of 
layers that comprise input, hidden, and output layers. Each of these layers is composed of 
units called neurons. The input layer receives data from the outside source that the neural 
network needs to analyze or learn about. The data goes through hidden layers that transform 
the input into data that is helpful for the output layer, and the last layer produces the final 
prediction or result. The feedforward neural network was created to adjust the weights of the 
neurons to minimize the error between the predicted and the real output. This process was 
carried out employing backpropagation and gradient descent. 

In this study, the neural device used is 4, 10, and 1, which are assigned to the number of 
neurons in the input, output, and masking layers, respectively. For both clays (commercial 
and Algerian bentonite), the input data are 22 and 20 values for training, 5 and 4 values for 
validation, and 5 and 4 values for test, which make up 70, 15, and 15% of the total data, 
respectively. Figure 2 shows the illustration of the ANN structure. 

The neural network tool in MATLAB was used to evaluate the ANN (feedforwardnet). The 
data were normalized using Eq. (2) [15]. 

𝑋𝑖
∗ =  

𝑋𝑖−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
          (2) 

Where, 𝑋𝑖
∗ is the normalized adsorption variable, Xmax and Xmin are the maximum and minimum 

values of Xi, respectively . 
Tables 1 and 2 illustrate the input dataset for the neural network, which contains feed 

initial MG concentration, solution pH, adsorbent dose, and contact time as input parameters. 
In the context of the optimization of malachite green adsorption from aqueous solutions, the 
use of ANN is essential since the problem cannot be modeled by simple linear relations or 
defined by explicit rules. ANNs appear to be excellent not only in complex non-linear 
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relationships directly from the data, but also to eliminate the need to program all possible 
scenarios. Their ability to continuously adapt and improve their performance with new data, 
even in variable environments, and to generalize effectively to new situations, makes them 
particularly relevant.  Moreover, unlike traditional algorithms that struggle with imperfect 
data, ANNs efficiently handle noisy or incomplete information while providing reliable 
predictions or classifications despite inaccuracies. This ability for learning by example and 
generalizing, combined with their central role in artificial intelligence for high-precision 
optimizations, predictions, and classifications, fully justifies their use to model our 
application, reflecting many research disciplines that are turning to artificial intelligence. 

 

Figure 2. Schematic illustration of ANN structure (input, hidden, and output layers). 

Table 1. Experimental conditions of commercial bentonite for AI-based modeling. 

N0 MG initial concentration C0 

(mg/L) 
Solution pH Adsorbent dose 

(g/L) 
Contact time 

(min) 
1 100 3.9 1 1 
2 100 3.9 1 2 
3 100 3.9 1 3 
4 100 3.9 1 4 
5 100 3.9 1 5 
6 100 3.9 1 10 
7 100 3.9 1 15 
8 100 3.9 1 20 
9 100 3.9 1 30 

10 100 3.9 1 60 
11 100 3.9 0.2 5 
12 100 3.9 0.4 5 
13 100 3.9 0.6 5 
14 100 3.9 0.8 5 
15 100 3.9 1 5 
16 100 3.9 1.2 5 
17 100 3.9 1.6 5 
18 100 3.9 2 5 
19 100 2 0.6 5 
20 100 4 0.6 5 
21 100 6 0.6 5 
22 100 7 0.6 5 
23 100 8 0.6 5 
24 100 10 0.6 5 
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Table 1 (continue). Experimental conditions of commercial bentonite for AI-based modeling. 

N0 MG initial concentration C0 

(mg/L) 
Solution pH Adsorbent dose 

(g/L) 
Contact time  

(min) 
25 4 3.9 0.6 5 
26 10 3.9 0.6 5 
27 20 3.9 0.6 5 
28 40 3.9 0.6 5 
29 80 3.9 0.6 5 
30 100 3.9 0.6 5 
31 200 3.9 0.6 5 
32 300 3.9 0.6 5 

Table 2. Experimental conditions of local Algerian bentonite for AI-based modelling. 

N0 MG initial concentration C0 
(mg/L) 

Solution pH Adsorbent dose 
(g/L) 

Contact time (min) 

1 100 3.9 1 5 
2 100 3.9 1 10 
3 100 3.9 1 15 
4 100 3.9 1 25 
5 100 3.9 1 30 
6 100 3.9 1 60 
7 100 3.9 0.2 5 
8 100 3.9 0.4 5 
9 100 3.9 0.6 5 

10 100 3.9 0.8 5 
11 100 3.9 1 5 
12 100 3.9 1.2 5 
13 100 3.9 1.6 5 
14 100 3.9 2 5 
15 100 2 1.2 5 
16 100 4 1.2 5 
17 100 6 1.2 5 
18 100 7 1.2 5 
19 100 8 1.2 5 
20 100 10 1.2 5 
21 4 3.9 1.2 5 
22 10 3.9 1.2 5 
23 20 3.9 1.2 5 
24 40 3.9 1.2 5 
25 80 3.9 1.2 5 
26 100 3.9 1.2 5 
27 200 3.9 1.2 5 
28 300 3.9 1.2 5 

3. RESULTS AND DISCUSSION 
3.1. Characterization of The Materials 

The X-ray fluorescence data for both used clays (Algerian bentonite and commercial 
bentonite) are presented in Table 3. Comparatively, the value of the SiO2/Al2O3 ratio 
(maximum substitution of Si4+ by Al3+) is about 3.3 for Algerian bentonite which remains 
higher than that of conventional bentonites (r = 2.7) and thus confirms previous results that 
highlight the co-existence of free quartz in the clay fraction [18].  
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X-ray diffraction patterns as well as the basal spacings of the two used bentonites are 
illustrated in Figure 3(a) and Table 3. As these diffractograms show, the peak corresponding 

to the reflection (001) of montmorillonite appears at 2 angles (2  7). This result indicates 
that the main interlayer cation in both bentonites is sodium (12.5 Ǻ of local Algerian bentonite 
and 12.55 Ǻ of the commercial bentonite, see Table 1), which is consistent with the XRF 
analysis results. Similar findings have been previously reported [19,20]. 

The textural properties of the two used clays are shown in Table 3. The commercial 
bentonite displays a BET specific surface area and pore volume, substantially higher than that 
of local Algerian bentonite. Additionally, it was observed that the commercial bentonite 
present high values of micropore surface area and micropore volume, in line with previous 
studies, demonstrating that the micropore are known to contribute to most of the adsorption 
capacity [21]. 

Table 3. Chemical composition (wt%), basal spacing (d001), and textural properties of the 
two used clays [5,22,23]. 

Adsorbent Chemical 
Composition (Wt%) 

 Textural Properties 

 
Al2O3 

 
SiO2 

 
Na2O 

 
d001 

(Ǻ) 

BET 
specific 
surface 

area 
(m2/g) 

Micropor
e Surface 

Area 
(m2/g) 

Micropor
e volume 
(cm3/g) 

Pore volume 
(cm3/g) 

Local 
Algerian 

bentonite 

17.75 58.52 2.72 12.5 59.3 13.0 0.009 0.11 

Commercial 
bentonite 

17.86 47.70 2.43 12.55 76.97 27 0.013 1.15 

Figure 3b shows the nitrogen adsorption–desorption isotherm of commercial bentonite 
and local Algerian bentonite. When the relative pressures were low (P/P0 < 0.5), the isotherm 
exhibited type I isotherms as classified by Brunauer, Deming, Deming, and Teller (BDDT) [24], 
which is characteristic of microporous systems [25]. Nevertheless, the isotherm is correlated 
with the type IV class when the P/P0 value is greater, indicating that the system has a wide 
range of pore sizes. The identification of hysteresis loops, type H3 as described by Sing et al. 
(1985) [25], suggests the existence of mesoporosity inside these materials. 

The FTIR spectra of the used clays appearing in the range of 4000–400 cm-1 are shown in 
Figure 3c. The band appearing at 3690 cm-1 is attributed to the vibrations of the Si-OH bond. 
The band at about 3625 cm−1 corresponds to the stretching vibration of octahedral O-H 
groups, attached to Al3+ or Mg2+ [26]. The band at 1634 cm−1 corresponds to H–O–H 
deformation vibrations of water. The most intense band at 997 cm−1 is attributed to the 
asymmetric Si–O–Si stretching vibrations of the tetrahedral sheet. The occupancy of the 
octahedral sheets is indicated by the 913 cm−1 band, representing Al–Al–OH bending 
vibrations. The montmorillonite is characterized by the bands at 516 and 461 cm-1, which 
correspond to the bending and stretching vibrations of Si-O bonds, respectively. 
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Figure 3. a) XRD patterns of used clays; b) N2 adsorption–desorption isotherms of used 
clays; c) FTIR spectra of used clays. 

3.2. ANN Optimization 

The results of the normalized data of the fitnet neural network optimization are shown in 
Figure 4. 

 

Figure 4. Normalized data of the fitnet neural network optimization. 

This figure shows that the optimal number of neurons (giving minimum prediction error) 
in the hidden layer is 10. The best neural network topology was 4-10-1, four input neurons 
(four parameters including contact time, adsorbent dose, solution pH, and initial malachite 
green concentration); ten neurons hidden in a layer, and one output neuron (designating 
removal MG percentage). The prediction error for the learning phase in blue color equals 
0.199. The prediction error for the validation and test phases in green and red colors is equal 

https://doi.org/10.17509/ijost.v11i1.87371


35 | Indonesian Journal of Science & Technology, Volume 11 Issue 1, April 2026 Hal 27-46 

DOI: https://doi.org/10.17509/ijost.v11i1.87371   
p- ISSN 2528-1410 e- ISSN 2527-8045 

to 0.023. The results of the normalized data of feedforward neural network optimization are 
shown in Figure 5. 

 

Figure 5. Normalized data of feedforward neural network optimization. 

These figures are optional, just to justify the choice of network architecture. Figure 2 above 
is the best case for a single hidden layer; therefore, we worked with it. 

To evaluate the model’s performance, we applied the correlation coefficient (R) and mean 
square error (MSE). R is used to assess the strength of associations between data variables. 
MSE is used to measure model prediction errors and to assess the difference between the 
predicted and actual values. The predictive modeling outcomes of neural network 
computations are presented in Tables 4 and 5. 

Table 4. Evaluation of predictive modeling outcomes of commercial bentonite. 

Number of 
neurons 

ANN at different 
stages 

Sample MSE R Overall 
performance 

Overall 
R 

5 Train 
Validation 

Testing 

22 
5 
5 

0.0525 
0.0165 
0.0142 

0.6864 
0.6370 
0.8030 

 
0.0409 

 
0.6519 

6 Train 
Validation 

Testing 

22 
5 
5 

2.0819×10-4 
0.1236 
0.0106 

0.9938 
0.9544 
0.9126 

 
0.0211 

 

 
0.6938 

7 Train 
Validation 

Testing 

22 
5 
5 

7.6509×10-4 
0.0016 
0.1276 

0.9774 
0.5057 
0.9188 

 
0.0207 

 
0.6977 

8 Train 
Validation 

Testing 

22 
5 
5 

0.0264 
0.0024 
0.0021 

0.7053 
0.8778 
0.6833 

 
0.0189 

 

 
0.7120 

9 Train 
Validation 

Testing 

22 
5 
5 

0.0268 
0.0274 
0.0016 

0.6240 
0.8087 
-0.0195 

 
0.0230 

 
0.6367 

10 Train 
Validation 

Testing 

22 
5 
5 

0.0025 
0.1541 
0.0034 

0.9158 
0.8231 
0.8961 

 
0.0263 

 

 
0.6110 
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Table 5. Evaluation of predictive modeling outcomes of local Algerian bentonite. 

Number of 
neurons 

ANN at different 
stages 

Sample MSE R Overall 
performance 

Overall 
R 

5 Train 
Validation 

Testing 

20 
4 
4 

3.2267×10-4 
0.0037 
0.0136 

0.9985 
0.9540 
0.8265 

 
0.0027 

 
0.9873 

6 Train 
Validation 

Testing 

20 
4 
4 

7.1256×10-5 
5.5563×10-4 

0.0164 

0.9995 
0.9988 
0.9922 

 
0.0025 

 
0.9900 

7 Train 
Validation 

Testing 

20 
4 
4 

4.6797×10-5 
3.7500×10-4 

0.0106 

0.9998 
0.9977 
0.9696 

 
0.0016 

 

 
0.9920 

8 Train 
Validation 

Testing 

20 
4 
4 

2.1517×10-4 
8.5405×10-4 

0.0438 

0.9992 
0.9897 
0.8704 

 
0.0065 

 
0.9716 

9 Train 
Validation 

Testing 

22 
5 
5 

0.0010 
5.9489×10-4 

0.0016 

0.9946 
0.9994 
0.9858 

0.0010 0.9948 

10 Train 
Validation 

Testing 

20 
4 
4 

2.6489×10-4 
0.0128 
0.0218 

0.9988 
0.8266 
0.6596 

 
0.0051 

 
0.9742 

The observed low MSE values and acceptable R values indicated good performance, given 
by the ANN structure with 10 neurons in the hidden layer for commercial bentonite and 7 
neurons in the hidden layer for local Algerian bentonite. Based on data for commercial 
bentonite (MSE = 0.0025; R = 0.9158) and local Algerian bentonite (MSE = 4.6797×10-5; R = 
0.9998), the network training is considered good. On the other hand, we noticed that there 
is a slowly decrease in performance for the validation (MSE = 0.1541, R = 0.8231 for 
commercial bentonite and MSE = 3.7500×10-4, R = 0.9977 for local Algerian bentonite) and 
the testing (MSE = 0.0034, R = 0.8961 for commercial bentonite and MSE = 0.0106, R = 0.9696 
for local Algerian bentonite) compared to the training because the validation and testing data 
are new to the network. Overall, these tables reveal that the ANN model can correlate well 
with the experimental values of the MG adsorption onto the two adsorbents. 

3.3. MG Adsorption on Used Clays 

The effect of different parameters on the MG adsorption was studied by parametric 
analysis. Figures 6 to 10 present the experimental results and their comparison with ANN 
ANN-predicted values. 

3.3.1. Effect of contact time 

Contact time is an important parameter as it can determine the time required to reach 
thermodynamic equilibrium for the adsorption process and predict the feasibility of an 
adsorbent for use in wastewater treatment. The removal efficiencies of MG on samples from 
aqueous solution as a function of contact time are depicted in Figure 6. As observed, the 
results revealed that removal efficiency rapidly increased within the first 1 min for commercial 
bentonite and 5 min for local Algerian bentonite and reached adsorption equilibrium 
thereafter. This can be interpreted by the fact that, at the start of adsorption, the number of 
active sites available on the surface of the adsorbent material is much greater than that 
remaining after a certain time. The final adsorption capacities were calculated to be 
approximately 99 % and 86% for commercial bentonite and local Algerian bentonite, 

https://doi.org/10.17509/ijost.v11i1.87371


37 | Indonesian Journal of Science & Technology, Volume 11 Issue 1, April 2026 Hal 27-46 

DOI: https://doi.org/10.17509/ijost.v11i1.87371   
p- ISSN 2528-1410 e- ISSN 2527-8045 

respectively. Subsequently, no further adsorption was observed. Therefore, a contact time of 
5 min for the two adsorbents was deemed sufficient for subsequent experiments. Compared 
with the literature, this equilibrium time is better than the ones previously reported [15]. 
However, the commercial bentonite has a higher adsorption capacity than the local Algerian 
bentonite. It can be related to the high values of micropore surface area and micropore 
volume for commercial bentonite, and consequently, increased adsorption capacity. The 
predicted data were in good agreement with the experimental values. 

The adsorption kinetics of MG by the two used clays were not achieved due to the very 
fast rate, and reached equilibrium within the first 5 minutes. 

 

Figure 6. Effect of contact time on MG removal (MG concentration: 100 mg/L, adsorbent 
dose: 1 g/L) of a) commercial bentonite and b) local Algerian bentonite. 

3.3.2. Effect of adsorbent dose 

In order to determine the minimum amount of adsorbent required that is economically 
feasible in the wastewater treatment process, we studied the effect of the dose of each 
sorbent on GM removal. As shown in the curve of Figure 7, the percentage of MG removal 
increases with increasing concentration of MG until the mass concentration reaches 0.6 and 
1.2 g/L for commercial bentonite and local Algerian bentonite, respectively. This behaviour is 
due to the high availability of adsorption sites for high concentrations of adsorbent. The 
saturation of the surface sites is reached at the equilibrium state.  The results clearly show 
that the optimal dose is 0.6 g/L for commercial bentonite and 1.2 g/L for local Algerian 
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bentonite, which will therefore be selected for subsequent experiments. The data predicted 
by the ANN are in close agreement with the trends observed experimentally. 

 

Figure 7. Effect of adsorbent dose on MG removal (contact time: 5 min, MG concentration = 
100 mg/L) of a) commercial bentonite and b) local Algerian bentonite. 

3.3.3. Effect of solution pH 

The pH variation of the aqueous solution plays an important role in the adsorption process 
[27].  In this study, the effects of pH on aqueous suspensions are examined in the pH range 2-
10 (Figure 8). The corresponding results show that the adsorption of MG by local Algerian and 
commercial bentonite clays was not affected by pH. Similar results have been reported from 
previous work [28-30]. Based on these results, we retained the pH solution without 
adjustment for MG in successive experiments. 
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Figure 8. Effect of solution pH on MG removal (MG concentration: 100 mg/L, contact time: 5 
min, adsorbent dose: 0.6 g/L for commercial bentonite and 1.2 g/L for local Algerian 

bentonite) of a) commercial bentonite and b) local Algerian bentonite. 

3.3.4. Effect of MG initial concentration 

The initial concentration of MG has a remarkable effect on the MG adsorption in aqueous 
solutions. Corresponding results shown in Figure 9 clearly show that the removal percentage 
of MG decreases slightly with increasing initial concentration. This is explained by the fact 
that at lower initial concentrations, the report of active surface sites on the adsorbent surface 
and the dye in solution is high, and therefore, all the MG molecules can be retained by the 
adsorbents. However, increasing the initial dye concentration slightly reduced the removal 
efficiency, which can be attributed to the lack of active sites on the adsorbents required for 
adsorption of high dye concentrations. Similar results have been obtained by previous reports 
[31,32]. In such conditions, there was a strong correlation between the predicted and 
experimental data. 
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Figure 9. Effect of initial MG concentration on MG removal (contact time: 5 min, adsorbent 
dose: 0.6 g/L for commercial bentonite and 1.2 g/L for local Algerian bentonite, pH: 7) of a) 

Commercial bentonite and b) local Algerian bentonite. 

3.3.5. Effect of temperature 

Temperature is an important parameter for the adsorption process. To study the influence 
of temperature on MG dye adsorption by commercial bentonite and local Algerian bentonite, 
experiments were carried out in the temperature range from 20 to 50°C.  Corresponding 
results in Figure 10 show that the % removal of MG was decreased from 99.77 to 96.77% and 
from 98.29 to 95.25% for commercial and local Algerian bentonite clays, respectively, as 
temperature increased from 20 to 50°C, indicating an exothermic interaction process. The 
predicted data exhibited good concordance with the experimental measurements. A similar 
effect has been observed with previously reported [33]. 

 

Figure 10. Effects of temperature on MG removal (contact time: 5 min, adsorbent dose: 0.6 
g/L for commercial bentonite and 1.2 g/L for local Algerian bentonite, pH: 7, MG 

concentration = 100 mg/L) of a) commercial bentonite and b) local Algerian bentonite. 

Table 6 presents a summary of the results of the training performance, validation 
performance, and the correlation coefficient in the MG adsorption onto commercial 
bentonite and local Algerian clays. 

The R values are greater than 0.70, indicating that the prediction and experimental data 
were in agreement and the proposed ANN model exhibited high predictive accuracy for MG 
adsorption onto the two adsorbents. The lowest values of training and validation 
performances illustrate the good results given by the ANN model. 
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Table 6. Training, validation performances, and the correlation coefficient in the MG 
adsorption onto adsorbents. 

Parameter effect Adsorbent Training 
performance 

Validation 
performance 

Correlation 
coefficient (R) 

Contact time  Commercial bentonite 0.0383 0.0509 0.71 
Local Algerian bentonite 1.9396×10-5 0.0058 0.9963 

Adsorbent dosage Commercial bentonite 0.0018 0.0049 0.9874 
Local Algerian bentonite 3.6575×10-4 0.0101 0.9911 

Solution pH Commercial bentonite 0.0044 0.0237 0.9333 
Local Algerian bentonite 3.5890×10-22 0.0497 0.9280 

Initial MG concentration Commercial bentonite 1.4001×10-4 0.0206 0.9773 
Local Algerian bentonite 6.3797×10-4 0.0068 0.9892 

Temperature 
 

Commercial bentonite 0.0020 4.2421×10-4 0.9963 
Local Algerian bentonite 4.3630×10-15 0.0184 0.9904 

3.3.6. Adsorption isotherms 

Experimental results were modeled to understand the interactions between MG and the 
adsorbent. The models used are Langmuir, Freundlich, and Temkin & Pyzhev (1940) [34-36]. 
The corresponding linear forms can be expressed using Eqs. (3-5), respectively. 
Ce/qe = 1/kLqm + Ce/qm                     (3) 
log qe =  log KF + 1 n ⁄ (log Ce)        (4) 
qe =  BT  ln KT + BT  ln Ce          (5) 
Where, qm (mg/g) is the maximum adsorption capacity, KL (L/mg) is the Langmuir constant, KF 
(mg/g) and n are the Freundlich constants, KT (L/mg) is the Temkin constant, BT is the constant 
(BT = R.T/b), T is the temperature (K), R is the universal gas constant (8.314 J/mol.K) and b is 
the Temkin constant related to heat of adsorption (J/mol). 

Figure 11 presents the adsorption isotherm fitting plots of local Algerian and commercial 
bentonite clays. Table 7 summarizes the estimated values of the corresponding parameters.  

The coefficient of determination (R2) values in the Freundlich isotherm model are higher 
than the R2 in the Langmuir and Temkin isotherms, indicating a better fit by this model. 
Generally, the value of n in the range of 2–10 indicates good, 1–2 moderately difficult, and 
below 1 poor adsorption characteristics [37]. The measured n was 2 and 2.36 for local Algerian 
bentonite and commercial bentonite, respectively, which means that the adsorption is 
favorable. 

Table 7. Isotherm model parameters for adsorption of MG onto commercial Bentonite and 
local Algerian bentonite. 

 

Adsorbent 
Langmuir Freundlich Temkin 

R2 KL (L/mg) qm (mg/g) R2 KF (mg/g) 𝑛 R2 KT (L/mg) BT 

Commercial bentonite 0.49 0.36 400 0.90 100.69 2.36 0.16 1.00 21.22 

Local Algerian bentonite 0.87 5.38 23.25 0.97 51.40 2 0.81 39.55 25.03 
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Figure 11. Linear a) Langmuir; b) Freundlich, and c) Temkin plots for MG adsorption by 

commercial bentonite and local Algerian bentonite. 

3.3.7. Thermodynamic modelling 

The adsorption process is often accompanied by thermal effects; thus, the study of 
thermodynamic parameters is important. Thermodynamic parameters, which include the 
change in Gibbs’ free energy (ΔG˚), enthalpy (ΔH˚), and entropy (ΔS˚), were used to define the 
thermodynamic behavior of the adsorption of MG onto the adsorbents and were calculated 
using the following Eq. (6-8) [38].  
Kc  =   𝑞𝑒m/𝐶𝑒             (6) 
LnKc  = ∆𝑆°/𝑅 − ∆𝐻°/𝑅𝑇         (7) 

∆G° = ∆H° − T∆S°          (8) 
Where, Kc is the thermodynamic equilibrium constant, qe is the amount of dye adsorbed at 
equilibrium (mg/g), m is the adsorbent dose (g/L), Ce the equilibrium concentration (mg/L) of 
the dye in solution, R is the universal gas constant (8.314 J/mol. K) and T is the absolute 
temperature (K). The values of ∆H° and ∆S° were calculated from the slope and intercept of 
the van’t Hoff scheme of LnKc against 1/T (see Eq. (10)) (Figure 12), and the thermodynamic 
parameters were summarized in Table 8. 

The thermodynamic parameters were summarized in Table 7. For the two adsorbents, the 
ΔG° values, which are negative, indicate that the adsorption process is spontaneous and 
thermodynamically favorable under the experimental conditions. The negative value of ΔH° 
suggests that the adsorption of MG onto adsorbents is exothermic. In addition, ΔH° values 
below 80 kJ/mol indicate the process to be physical adsorption. The negative ΔS° value 
suggests a decline in the disorder at the solid/solution interface during the adsorption. The 
same results were reported previously in the literature [39]. 
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Table 8. Thermodynamic parameters of MG adsorption onto commercial bentonite and 
local Algerian bentonite. 
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Figure 12. Thermodynamic analysis for MG adsorption at different temperatures. 

3.4. MG Adsorption on Used Clays 

The results of this study directly support the essential objectives of sustainable 
development (SDG) of the United Nations. In this context, the effective removal of the MG 
dye from aqueous solutions contributes directly to the achievement of SDG 6 (Clean Water 
and Sanitation) by improving water quality, reducing environmental contamination, and thus 
protecting human health. 

So, it clearly appears that the use of natural and/or modified bentonites that are abundant, 
economical, and non-toxic in the elimination of organic pollutants in water by adsorption 
supports SDG 12 (Responsible consumption and production) by promoting the use of 
sustainable materials in water treatment. 

4. CONCLUSION 
 

This work investigated the adsorption process of both adsorbents towards MG and 
developed an ANN model to predict MG adsorption. The used adsorbents were characterized 
by FTIR, XRF, XRD, and nitrogen adsorption at 77K. The Freundlich model fitted the two 
equilibrium isotherms. The negative values of ∆G° and ∆H° indicate that the adsorption 
process was physical, spontaneous, and exothermic. The proposed ANN model 4-10-1 can 
correlate the adsorption results with acceptable R and MSE. The used clays are therefore 

Adsorbent ΔH˚ (kJ/mol) ΔS˚ (J/mol.K) ΔG˚  (kJ/mol) 

   293 K 303 K 313 K 323 K 

Local Algerian bentonite - 22.08 - 43.42 - 9.35 - 8.92 - 8.48 - 8.05 
Commercial bentonite - 52.71 - 126.20 - 15.73 - 14.47 - 13.20 - 11.94 
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environmentally friendly adsorbents and contribute positively to the objectives of sustainable 
development of the United Nations. 
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