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A B S T R A C T   A R T I C L E   I N F O 

This study examined the effectiveness of two newly 
synthesized benzimidazole derivatives as corrosion inhibitors 
for mild steel in 1 M HCl solution. The newly synthesized 
benzimidazole derivatives are 1-(Cyclohex-1-enyl)-3-((3-(4-
nitrophenyl)isoxazol-5-yl)methyl)-1H-benzimidazol-2(3H)-
one (as P1) and 1-(Cyclopent-1-en-1-yl)-benzimidazol-2(3H)-
one (as P2). Potentiodynamic polarization, electrochemical 
impedance spectroscopy, scanning electron microscopy, and 
energy-dispersive X-ray spectroscopy were applied, 
complemented by density functional theory and Monte Carlo 
simulations. Results showed that both compounds act as 
mixed-type inhibitors, simultaneously reducing anodic and 
cathodic reactions. At an optimal concentration, they 
achieved inhibition efficiencies of more than 97%. Quantum 
chemical analysis revealed a change in energy gap and 
stronger adsorption energy, displayed greater reactivity and 
stability. SEM-EDX confirmed the formation of a protective 
layer through spontaneous adsorption, consistent with the 
Langmuir isotherm model. These findings highlight the 
potential of benzimidazole derivatives as efficient and 
sustainable corrosion inhibitors because they enhance 
material protection, improve thermodynamic stability, and 
reduce environmental and economic losses in industrial uses. 
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1. INTRODUCTION 
 

Steel is widely applied in industrial processes such as pipelines for oil and gas 
transportation, desalination, and acid pickling because of its low cost, mechanical strength, 
and availability [1-3]. However, exposure to aggressive acidic environments, particularly 
hydrochloric acid (1 M), accelerates deterioration, leading to significant economic and safety 
concerns [4-8]. One of the most effective approaches to mitigate this problem is the use of 
corrosion inhibitors, which can adsorb on metal surfaces and block active sites, thus reducing 
anodic dissolution and cathodic hydrogen evolution. 

Organic compounds containing heteroatoms such as nitrogen, sulfur, and oxygen, as well 
as π-electron systems, have been reported to act as efficient corrosion inhibitors through 
physical or chemical adsorption mechanisms [9-12]. Among these, benzimidazole and its 
derivatives are of particular interest due to their aromaticity, electron-rich heterocyclic 
structure, and capacity for hydrogen bonding. These features allow strong interactions with 
metallic surfaces, forming protective films that enhance corrosion resistance. Benzimidazole 
derivatives have also shown significant versatility in other fields, including pharmaceuticals, 
coordination chemistry, and materials science, which demonstrates their structural stability 
and potential for multifunctional applications [13-19]. 

Despite these advances, further studies are needed to design and evaluate new 
benzimidazole derivatives with improved efficiency, stability, and sustainability for industrial 
use. This study addressed this gap by synthesizing and characterizing two benzimidazolone-
based inhibitors and evaluating their protective behavior against mild steel corrosion in 
hydrochloric acid. The newly synthesized benzimidazole derivatives are 1-(Cyclohex-1-enyl)-
3-((3-(4-nitrophenyl)isoxazol-5-yl)methyl)-1H-benzimidazol-2(3H)-one (as P1) and 1-
(Cyclopent-1-en-1-yl)-benzimidazol-2(3H)-one (as P2). Electrochemical methods, including 
potentiodynamic polarization and impedance spectroscopy, were combined with theoretical 
approaches based on density functional theory and Monte Carlo simulations to analyze the 
adsorption mechanism. Surface morphology was further examined through scanning electron 
microscopy coupled with energy-dispersive X-ray spectroscopy. Also, this study was to clarify 
the inhibition mechanism of the two synthesized compounds and compare their performance 
in terms of stability and adsorption strength. The novelty lies in the integration of 
experimental and computational approaches to explain the electronic descriptors governing 
inhibitor efficiency. The findings contribute to the development of sustainable and highly 
effective corrosion inhibitors, reducing material degradation, supporting industrial safety, 
and aligning with sustainable development goals. 

2. METHOD 
2.1. Synthesis of Isoxazolyl-benzimidazolone 

The newly synthesized benzimidazole derivatives are 1-(Cyclohex-1-enyl)-3-((3-(4-
nitrophenyl)isoxazol-5-yl)methyl)-1H-benzimidazol-2(3H)-one (as P1) and 1-(Cyclopent-1-en-
1-yl)-benzimidazol-2(3H)-one (as P2).  

Compound P2 was synthesized in 94% yield by the condensation of o-phenylenediamine 
(1) with compound (2) in xylene, as illustrated in Figure 1. For the preparation of the 
cycloadduct P1 (see Figure 2), a mixture of compound (3) (3.97 mmol) and mesitonitrile oxide 
(4) (4.7 mmol) was stirred in anhydrous diethyl ether (30 mL) at room temperature for 10 
days. After solvent evaporation, the crude residue was subjected to column chromatography 
using a 6:4 (v/v) mixture of hexane and ethyl acetate as the eluent, affording the desired 
cycloadduct in pure form. 
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Figure 1. Experimental conditions: Xylene, 4h. 

 

Figure 2. Reagents and conditions: Ether, room temperature. 

2.2. Spectroscopic Analysis of P1 and P2 

The following chemical information is in the following: 
(i) 1-(Cyclopent-1-en-1-yl)-benzimidazol-2(3H)-one (as P2). White solid, Yield = 94%. M.P = 

160-162°C (ethanol) (Lit. M.P = 157-159°C). IR (KBr, ν (cm⁻¹)): 3413 (NH-imidazolic), 1602 
(C=O). ¹H NMR (300 MHz, CDCl₃): δ (ppm): 2.15; 2.65; 2.95; 2.33 (3m, 6H, 3CH₂-, H-
cyclopentenyl); 5.90 (m, 1H, =CH-, H-cyclopentenyl); 6.89–7.25 (m, 4H, =CH-, H-Ar); 10.77 
(s, 1H, NH). ¹³C NMR (75 MHz, CDCl₃): δ (ppm): 22.26; 30.53; 32.08 (3C, 3CH₂-, C-
cyclopentenyl); 123.62 (1C, =CH-, C-cyclopentenyl); 109.62; 109.87; 121.27; 121.64 (4C, 
=CH-, C-Ar); 128.42; 130.06; 135.92 (3C, =C-, quaternary C); 154.91 (C=O). HRMS (m/z): 
[M+H]⁺, calculated mass for C₁₂H₁₃N₂O: 201.1022; found mass: 201.1020. 

(ii) 1-(Cyclohex-1-enyl)-3-((3-(4-nitrophenyl)isoxazol-5-yl)methyl)-1H-benzimidazol-2(3H)-
one (as P1). Yellow solid, Yield = 66%, M.P = 180-182°C (ethanol). IR (KBr, ν (cm⁻¹)): 1705 
(C=O), 1608 (C=N). ¹H NMR (300 MHz, CDCl₃), δ (ppm): 1.63; 1.74; 2.11; 2.24 (4m, 8H, 
4CH₂-, H-cyclohexenyl); 5.14 (s, 2H, isoxazole-CH₂-benzimidazolone); 5.85 (m, 1H, =CH-, 
H-cyclohexenyl); 6.51 (s, 1H, =CH-, H-isoxazole-4'); 6.93–8.19 (m, 8H, =CH-, H-Ar). ¹³C 
NMR (75 MHz, CDCl₃), δ (ppm): 21.60; 22.55; 24.72; 26.78 (4C, 4CH₂-, C-cyclohexenyl); 
36.47 (1C, isoxazole-CH₂-benzimidazolone); 101.42 (1C, =CH-, C-isoxazole-4'); 127.67 (1C, 
=CH-, C-cyclohexenyl); 107.94; 109.07; 121.79; 122.08; 124.20; 127.71; 128.54 (8C, =CH-
, C-Ar); 129.65; 131.98; 134.71; 148.75 (6C, =C-, quaternary C); 152.58; 160.95; 168.76 
(3C, C=N, =C-O, C=O). HRMS (m/z): [M+H]⁺, calculated mass for C₂₃H₂₁N₄O₄: 417.1557; 
found mass: 417.1557. 
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2.3. Computational Details 

The quantum chemical calculations were performed using the Gaussian 09 software 
package with the 6-311G(d,p) basis set. These computations were employed to determine 
key global reactivity descriptors, including electronegativity (χ), chemical hardness (η), 
softness (σ), back-donation energy (ΔEb–d), and the fraction of transferred electrons (ΔN). 
Such parameters are essential for evaluating the molecular reactivity and adsorption 
tendencies of the inhibitors, thereby providing insights into their efficiency as corrosion 
inhibitors. The derivation of these descriptors was based on standard quantum chemical 
Equations (1)-(7) [20,21].  
∆𝐸𝑔𝑎𝑝 = 𝐸𝐿𝑈𝑀𝑂 − 𝐸𝐻𝑂𝑀𝑂         (1) 

χ =
1

2
𝐸𝐿𝑈𝑀𝑂 + 𝐸𝐻𝑂𝑀𝑂          (2) 

𝜂 =
1

2
𝐸𝐿𝑈𝑀𝑂 − 𝐸𝐻𝑂𝑀𝑂         (3) 

𝜎 =
1

𝜂
            (4) 

∆𝐸𝑏−𝑑 = −
𝜂

4
           (5) 

𝜇 = −𝑋 =
𝐸𝐿𝑈𝑀𝑂+𝐸𝐻𝑂𝑀𝑂

2
         (6) 

∆𝑁 =
Φ−χ𝑖𝑛ℎ

2(𝜂𝐹𝑒110+𝜂𝑖𝑛ℎ)
          (7) 

2.4. Molecular Simulations 

Molecular dynamics simulations were performed to investigate the interaction of 
inhibitors P1 and P2 with a metallic surface in an aqueous corrosive medium. The simulation 
system consisted of 100 water molecules, three chloride ions (Cl⁻), and three hydronium ions 
(H₃O⁺), confined in a cell with dimensions of 25 Å × 25 Å × 94 Å. The simulations were carried 
out at 298 K for a total duration of 250 ps with a time step of 1 fs, using the Andersen 
thermostat to maintain thermal equilibrium [22]. Both electrostatic and van der Waals 
interactions were considered in calculating adsorption energies, which served as indicators of 
inhibitor efficiency. This computational approach provides valuable insights into adsorption 
mechanisms at the molecular level and supports the rational design of more effective 
corrosion inhibitors [23]. 

2.5. Surface Analysis 

Surface characterization was carried out using an FEI Quanta 200 scanning electron 
microscope (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX). These 
techniques were employed to evaluate the surface morphology and elemental composition 
of mild steel after exposure to the corrosive medium [23,25]. Samples with and without the 
inhibitor at its optimal concentration (10⁻⁴ M) were analyzed following six hours of 
immersion, allowing for a direct comparison of the protective effect provided by the 
inhibitors. 

3. RESULTS AND DISCUSSION 
3.1. DFT Study 

Density Functional Theory (DFT) calculations are valuable tools for understanding and 
predicting the molecular behavior of organic compounds as corrosion inhibitors. These 
methods provide insights into key electronic properties, such as electron density distribution, 
frontier molecular orbitals (HOMO–LUMO), and global reactivity descriptors, including 
electronegativity, chemical hardness, and electrophilicity index, which are directly correlated 
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with the adsorption capacity of inhibitors on steel surfaces [26]. The frontier molecular 
orbitals of the studied compounds are presented in Figure 3, and the calculated descriptors 
are summarized in Table 1. 

For the P1 molecule, the HOMO density is mainly localized on the benzimidazolone group, 
while the LUMO density is distributed over the benzo-triazolyl motif. In contrast, for the P2 
molecule, both the HOMO and LUMO densities are concentrated on the benzimidazolone 
motif and the adjacent C=C bond. 

The Molecular Electrostatic Potential (MEP) further illustrates the electron density 
distribution within each molecule, identifying regions most likely to participate in chemical 
interactions. Red zones represent electron-rich regions favorable for electrophilic attack, 
while blue zones indicate electron-deficient regions acting as electrophilic sites. Intermediate 
colors (such as green or yellow) denote neutral potential. This mapping provides useful 
predictions of molecular reactivity, intermolecular interactions, and non-covalent bonding 
such as hydrogen interactions [27-29]. 

As shown in Figure 3, P1 displays greater electron-rich character in the triazol regions as 
well as around the C=O group of the benzimidazolone motif, making it more capable of 
donating electrons. This property facilitates the formation of coordination bonds with metal 
atoms, which is a common mechanism of corrosion inhibition. In contrast, P2 contains only 
the C=O group of the benzimidazolone motif, which acts primarily as an electron-withdrawing 
group due to its electronegativity and inductive effect. Consequently, P1 demonstrates a 
stronger electron-donating ability and is expected to form more stable complexes with the 
steel surface, leading to superior inhibition performance [30]. 

 

Figure 3. Optimized structure, HOMO & LUMO, MEP maps, and contour distribution of P1 
and P2 molecules in aqueous solution. 

Based on the quantum descriptors presented in Table 1, the EHOMO values of P1 and P2 
are -5.8930 and -5.8541 eV, respectively. These values reflect the electron-donating capability 
of the molecules, with P1 showing a slightly higher tendency to donate electrons, an 
important feature for interacting with the metal surface during corrosion inhibition [31,32]. 
The ELUMO values are -1.1383 eV for P1 and -0.5236 eV for P2, suggesting that P1 is also more 
capable of accepting electrons than P2. This dual ability indicates that P1 may form stronger 
and more specific coordination bonds with the steel surface, enhancing its inhibitory 
performance [33]. 

https://doi.org/10.17509/ijost.v11i2.89778


El Mrayej et al., Corrosion Inhibition of Mild Steel in Hydrochloric Acid Solution by Benzimidazole… | 270 

DOI: https://doi.org/10.17509/ijost.v11i2.89778 

p- ISSN 2528-1410 e- ISSN 2527-8045 

The calculated energy gap (ΔE) values are 4.7548 eV for P1 and 5.3306 eV for P2. Since a 
smaller energy gap corresponds to higher reactivity, P1 is expected to be more reactive and 
efficient as a corrosion inhibitor [34]. The electron transfer parameter (ΔN) shows values of 
0.2743 for P1 and 0.3060 for P2, suggesting that P2 may facilitate a slightly greater electron 
transfer during the inhibition process. In addition, the binding energy (ΔEb–d) is more negative 
for P2 than for P1, indicating stronger adsorption of P2 on the metal surface [35]. 

Table 1. Energy values of LUMO, HOMO, gap of the BTD and BTDH+ obtained by B3LYP/6-
311G (d, p). 

Descriptor P1 P2 
EHOMO (eV) -5.89303 -5.85411 
ELUMO(eV) -1.13827 -0.52355 
∆E(eV) 4.75475 5.33055 

(eV) 2.37737 2.66527 

(eV-1) 0.42063 0.37519 

(eV) 3.51565 3.18883 

∆N(eV) 0.27432 0.30600 
∆Eb-d (eV) -0.59465 -0.66631 

3.2. Monte Carlo 

Monte Carlo simulations were conducted to examine the adsorption behavior of the 
inhibitor molecules on the steel surface in a corrosive medium at the atomic scale. A 
simulation cell of 25 Å × 25 Å × 94 Å was constructed, containing the inhibitor (P1 or P2), 180 
water molecules, and three chloride (Cl⁻) and three hydronium (H₃O⁺) ions. The resulting 
equilibrium adsorption configurations are shown in Figure 4, and the calculated parameters 
are summarized in Table 2. 

The total energy values obtained for P1 (-3.8609) and P2 (-3.6531) indicate that P1 is more 
stable than P2 in the simulated system, which may be attributed to differences in geometry, 
electronic distribution, and intermolecular interactions. Adsorption energy analysis confirms 
this observation: P1 exhibits a more negative value, enhanced by about 0.6 kcal/mol, 
signifying a stronger interaction with the metal surface. Although both molecules undergo 
comparable rigid adsorption and deformation energies, P1 demonstrates more intense 
interactions due to its lower adsorption energy. 

The differential energy contributions (dEad/dNi) also highlight clear differences. For P1, the 
overall adsorption energy (-573.6713) and its interaction with water molecules (-34.0848) are 
significantly more negative compared to P2 (-182.4354 and -24.0980, respectively). This 
suggests that P1 achieves more effective interaction with the aqueous environment, 
enhancing its ability to form a compact protective barrier. In contrast, the interactions with 
hydronium (H₃O⁺) and chloride (Cl⁻) ions are similar for both inhibitors, with values of -
168.1758 and -141.789 for P1 and -169.6128 and -152.088 for P2, indicating that both 
compounds provide comparable resistance against ionic attack [36]. 
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Figure 4. Views of equilibrium adsorption configurations of compounds P1 and P2 on Fe 
(110) surfaces 

Table 2. Eads for the molecular structure studied on the Fe (110) / 180 H2O system (all units 
are in kcal/mol). 

Chem. Total 

energy 

Adsorption 

energy 

Rigid 

adsorption 

energy 

Deformation 

energy 

dEad/

dNi 

water: 

dEad/dNi 

H3O+: 

dEad/dNi 

Ion 

chlore: 

dEad/dNi 

P1 -3.8609 -7.9464 -4.1380 -3.8084 -

573.67

13 

-34.0848 -168.1758 -141.7829 

P2 -3.6531 -7.3249 -3.7865 -3.5384 -

182.43

54 

-24.0980 -169.6128 -152.0888 
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3.3. Electrochemical Analysis 
3.3.1. Measurements EIS 

Electrochemical impedance spectroscopy (EIS) was performed to assess the effect of P1 
and P2 inhibitors on mild steel corrosion (Figure 5). The Nyquist and Bode plots deviate from 
ideal semicircles, which is attributed to surface heterogeneity and the adsorption of 
inhibitors. To account for this behavior, a constant phase element (CPE) was introduced into 
the equivalent circuit model, addressing deviations from ideal capacitive response often 
observed in electrochemical systems. From the CPE parameters and polarization resistance 
(Rp), the double-layer capacitance (Cdl) was calculated, providing insights into interfacial 
properties and surface coverage. 

The Bode spectra reveal that increasing inhibitor concentration leads to higher impedance 
values at low frequencies, indicating improved resistance to charge transfer processes. This 
effect is consistent with the formation of a protective barrier by adsorbed inhibitor molecules, 
which limits the access of aggressive ions such as Cl⁻ and H⁺ to the steel surface. Additionally, 
the shift toward more negative phase angles at higher inhibitor concentrations suggests 
enhanced capacitive behavior due to more uniform and continuous surface coverage. Such 
improvements reflect a reduction in active corrosion sites and confirm the inhibitors’ 
effectiveness. The incorporation of a CPE further refines the modeling of electrode interface 
behavior by considering factors such as inhomogeneous adsorption, surface roughness, 
porosity, fractal features, and distributed time constants [37,38]. 

 

Figure 5. Nyquist (a,b) and Bode (c,d) plots for P1 (a,c) and P2 (b,d) inhibitors at different 
concentrations. 
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Table 3 summarizes the electrochemical parameters obtained from EIS measurements of 
mild steel in 1 M HCl solution with and without inhibitors P1 and P2. The solution resistance 
(Rs) remains nearly constant across all conditions, confirming that the inhibitors do not 
significantly affect the bulk conductivity of the medium due to their low concentrations and 
negligible impact on ionic strength. 

Table 3. EIS parameters obtained for a 1 M HCl solution and various concentrations of the 
inhibitors under study. 

Medium Cinb 
(mol/L) 

Rs 
(Ω.cm2) 

CPE RP 
(Ω.cm2) 

Cdl 
(µF/cm2) 

EIS 
% Q (F/sn.cm2) n 

HCL  1 1.2 297.6 0.809 44.1 107.1 - 

P1 

10-4 9.5 21.2 0.880 1902.0 13.7 97.7 
10-5 4.1 34.8 0.853 1223.0 20.2 96.4 
10-6 9.2 53.9 0.850 655.5 29.9 93.2 
10-7 7.7 128. 2 0.818 131.3 51.7 66.4 

P2 

10-4 8.1 23.2 0.866 1 532.0 13.9 97.1 
10-5 8.3 28.6 0.849 1 194.0 15.7 96.3 
10-6 8.1 70.4 0.855 404.4 38.6 89.0 
10-7 7.0 96.3 0.842 224.4 46.9 80.3 

In contrast, the polarization resistance (Rp) increases markedly with inhibitor 
concentration, reaching maximum values of 1902 Ω·cm² for P1 and 1532 Ω·cm² for P2 at 10⁻⁴ 
mol/L, demonstrating their strong protective effect. Simultaneously, the pseudo-capacitance 
(Q), associated with the CPE, decreases with higher inhibitor concentrations. This reduction 
reflects the replacement of water molecules and aggressive ions by inhibitor molecules at the 
steel surface, which lowers the dielectric constant and/or increases the thickness of the 
electrical double layer. 

The exponent n also increases with inhibitor concentration, indicating that the steel 
surface becomes more homogeneous as a uniform protective coating is formed. This layer 
reduces surface roughness, suppresses localized corrosion, and improves overall surface 
coverage. Consistently, the Cdl decreases with concentration, confirming the development of 
a protective film that limits exposure of the steel to the acidic medium. 

At optimal concentration (10⁻⁴ mol/L), inhibition efficiencies reach 97.7% for P1 and 97.1% 
for P2. Both inhibitors thus provide excellent corrosion protection, although P1 performs 
slightly better. At lower concentrations, reduced efficiency is observed due to incomplete 
adsorption of inhibitor molecules. These results confirm that benzimidazolone derivatives are 
highly effective corrosion inhibitors for mild steel in acidic environments [39-41]. 

3.3.2. Potentiodynamic polarization measurements 

Potentiodynamic polarization (PDP) measurements (Figure 6) reveal that both P1 and P2 
significantly reduce the corrosion current density (icorr) and shift the corrosion potential 
(Ecorr) toward less negative values, confirming their inhibitory effect on mild steel corrosion in 
1 M HCl. As inhibitor concentration increases, icorr decreases, indicating suppression of both 
anodic metal dissolution and cathodic hydrogen evolution. The reduction is attributed to the 
adsorption of inhibitor molecules on the steel surface, which blocks active sites and prevents 
corrosive attack. 

The Tafel plots show that Tafel’s law is valid primarily in the cathodic region, suggesting 
that the reduction of H⁺ ions follows an activation-controlled mechanism. Moreover, the 
progressive shift of both anodic and cathodic branches with increasing inhibitor concentration 
demonstrates that P1 and P2 act as mixed-type inhibitors, influencing both anodic and 
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cathodic processes. This dual action validates their classification as efficient mixed corrosion 
inhibitors in acidic environments [36,42,43]. 

 

 

Figure 6. Polarization curves with (a) and without (b) P1 and P2 inhibitors at varying 
concentrations. 

Table 4 summarizes the effect of different concentrations of P1 and P2 inhibitors on the 
corrosion behavior of mild steel in 1 M HCl solution. At the highest concentration (10⁻⁴ mol/L), 
the inhibition efficiency (ηPP%) reaches 98.5%, demonstrating a substantial reduction in 
corrosion activity. Strong protection is maintained at 10⁻⁵ and 10⁻⁶ mol/L, with efficiencies 
remaining slightly below 97%, confirming that both inhibitors are highly effective even at 
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lower dosages. However, at the extremely low concentration of 10⁻⁷ mol/L, the inhibition 
efficiency decreases to 80% for P1 and 73% for P2, indicating insufficient surface coverage 
and reduced protective ability. In terms of electrochemical parameters, the cathodic slopes 
(βc) increase with inhibitor concentration, reflecting the ability of P1 and P2 to slow down the 
reduction of H⁺ ions and suppress cathodic reactions. Overall, both inhibitors significantly 
reduce the corrosion rate of mild steel, with P1 consistently performing better than P2. Their 
effectiveness is most pronounced at higher concentrations, while lower concentrations limit 
adsorption and reduce corrosion protection [36,44,45]. 

Table 4. Electrochemical parameters of MS in 1 M HCl without and with the addition of 
various concentrations of P1 and P2. 

Medium Tafel Data 

Cinh 
(mol / L) 

-Ecorr 
(mV. Ag/AgCl) 

icorr 
(µA.cm-2) 

-βc              
(mV.dec-1) 

ηPP 
% 

HCl  1 497 1294 160  

P1 

10-4 519 20 157 98.5 
10-5 525 28 150 97.8 

10-6 527 43 151 96.7 
10-7 536 253 159 80.0 

P2 

10-4 519 19 156 98.5 
10-5 540 27 154 97.9 
10-6 533 75 143 94.2 
10-7 545 349 136 73.0 

 

 

3.3.3. Effect of immersion time 

The performance of P1 and P2 inhibitors was evaluated over immersion times ranging from 

30 minutes to 12 hours in 1 M HCl solution, both with and without inhibitors (Figure 7). 

Electrochemical impedance and related parameters showed that corrosion resistance 

improved significantly with immersion time in the presence of inhibitors, reflecting the 

gradual formation of a protective layer on the steel surface. 

Table 5 presents the electrochemical results for mild steel under these conditions. In the 

uninhibited solution, the solution resistance (Rs) remained nearly constant, while the 

polarization resistance (Rct) progressively decreased and the Cdl increased, indicating 

accelerated corrosion and greater exposure of the metal surface to the acidic medium. In 

contrast, the addition of P1 and P2 at 10⁻⁴ M resulted in a considerable increase in 

polarization resistance (Rp) and a marked decrease in both Q (apparent capacitance) and Cdl. 

These trends confirm efficient adsorption of the inhibitor molecules, reduced charge transfer, 

and the formation of a protective film that limits corrosive attack [46,47]. 

Both inhibitors exhibited inhibition efficiencies above 96% throughout the immersion 
period. However, a slight decline in performance was observed after six hours, likely due to 
partial deterioration or saturation of the protective film. P1 demonstrated slightly higher 
efficiency in the early stages, while P2 showed better stability beyond eight hours, suggesting 
complementary protective behaviors over time. 
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Figure 7. Nyquist representation of mild steel, with (a) and without (b) the use of inhibitors, 
examined at various immersion times. 
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Table 5. Electrochemical parameters for various immersion times with and without P1 and 
P2 inhibitors. 

Medium Time 

(h) 

Rs (Ω.cm2) CPE Rp 

(Ω.cm2) 

Cdl 

(µF/cm2) 

imp 

% Q (F.sn-1/cm2) n 

1 M HCl 

1/2 1.2 297.6 0.809 44.1 107.1 - 

1 1.6 364.9 0.810 26.4 122.7 - 

2 1.6 364.8 0.810 26.3 122.8 - 

1 M HCl 

4 1.5 627.0 0.834 21.4 267.0 - 

6 1.0 963.8 0.796 19.4 349.4 - 

12 1.2 949.2 0.764 10.4 419.5 - 

P1 

1/2 9.5 21.2 0.880 1902.0 13.7 97.7 

2 9.3 20.8 0.887 1538.0 13.4 98.2 

4 9.1 22.5 0.891 1164.0 14.4 97.7 

6 8.7 27.9 0.885 746.3 16.9 97.1 

8 8.6 28.6 0.897 603.9 17.9 96.7 

12 8.5 30.7 0.898 476.3 19.0 98.8 

 
1/2 8.1 23.2 0.866 1 532.0 13.9 97.1 

2 9.3 20.8 0.887 1538.0 13.4 98.2 
 4 9.1 22.5 0.891 1164.0 14.4 97.7 

P2 6 8.7 27.9 0.885 746.3 16.9 97.1 

 8 8.6 28.6 0.897 603.9 17.9 96.8 

 12 8.5 30.7 0.898 476.0 19.0 97.8 

3.3.4. Effect of temperature 

The influence of temperature on the inhibition performance of P1 and P2 was evaluated 

using Tafel polarization curves at temperatures ranging from 298 to 328 K, with and without 

inhibitors at the optimum concentration (10⁻⁴ M) (see Figure 8). At 298 K, both P1 and P2 

exhibited high inhibition efficiencies of about 98.5%, with Ecorr and icorr values close to those 

of the uninhibited solution but slightly higher. As the temperature increased to 308, 318, and 

328 K, Ecorr shifted negatively and icorr increased, indicating enhanced corrosion activity. 

Nonetheless, inhibition efficiency remained high, fluctuating between 96.9 and 98.5%, 

although a slight decrease was observed at 328 K. This decline may be attributed to reduced 

adsorption of inhibitor molecules on the steel surface at elevated temperatures [48]. Notably, 

the cathodic slope (-βc) remained nearly constant, suggesting that the cathodic inhibition 

mechanism is preserved even at higher temperatures. 

Thermodynamic parameters associated with the corrosion process were determined using 

the Arrhenius and transition state equations (see Figure 9 and Table 6). Plots of ln(icorr) and 

ln(icorr/T) versus 1000/T, obtained in both inhibited and uninhibited solutions, enabled the 

calculation of activation energy (Ea) from the slopes of the linear fits according to (-Ea/R). 

Enthalpy (ΔH) and entropy (ΔS) of activation were also extracted from the transition state 

analysis. These parameters provide further insight into the adsorption and inhibition 

mechanisms of P1 and P2 at different temperatures, confirming their efficiency across the 

tested thermal range. 
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Figure 8. Polarization curves of mild steel, both in the absence (a) and presence of P1 (b) 

and P2 (c) in a 1 M HCl medium with a concentration of 10-4M. 

Table 6. Electrochemical properties of steel in the presence of 1 M HCl, with and without 

incorporation of 10-4 M, at various temperatures. 

Medium 
Temperature 

(K) 
-Ecorr 

(mV. Ag/AgCl) 
icorr 

(µA.cm-2) 
-βc         

(mV.dec-1) 
ηPP 

% 

1.0 M HCl 

298 497 1294 160 - 
308 474 3531 119 - 
318 480 5562 152 - 
328 486 7329 151 - 

P1 

298 519 20 157 98.5 
308 530 56 147 98.4 
318 540 108 145 98.0 
328 533 223 138 96.9 

 298 519 19 156 98.5 
P2 308 530 56 146 98.4 

 318 539 104 142 98.1 
 328 531 222 141 96.9 
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Figure 9. Arrhenius plots: ln(i corr) vs 1000/T and ln(i corr / T, examining the impact of 

inhibitors P1 (a) and P2 (b) on mild steel (MS) corrosion in the presence of a 1 M HCl 

solution. 
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3.3.5. Details of theoretical calculations 

Table 7 presents the thermodynamic and kinetic parameters of mild steel corrosion in 1 M 
HCl, both without and with inhibitors. The evaluated parameters include activation energy 
(Ea), activation enthalpy (ΔHa), and activation entropy (ΔSa). For the uninhibited solution, Ea 
is relatively low (46.35 kJ/mol), indicating that corrosion proceeds readily. In the presence of 
inhibitors, Ea increases to 64.29 kJ/mol for P1 and 65.13 kJ/mol for P2, confirming that both 
compounds raise the energy barrier and slow the corrosion process. A similar trend is 
observed for ΔHa, which increases from 43.75 kJ/mol (blank solution) to 61.69 kJ/mol for P1 
and 62.54 kJ/mol for P2, supporting the protective effect of inhibitor adsorption. The 
difference (Ea - ΔHa) is close to RT (≈ 2.6 kJ/mol at 313 K), consistent with the thermodynamic 
relationship for activated processes, thereby validating the reliability of the experimental data 
(R. Salim et al., 2024; Kazra M. Galai et al., 2020). 

Table 7. Corrosion parameters of mild steel (MS) in the corrosive solution, with and without 
P1 and P2 inhibitors. 

Medium Ea 
(kJ.mol-1) 

∆Ha 
(kJ. mol-1) 

Ea -∆Ha 

(J. mol-1.K-1) 
∆Sa 

(J. mol-1.K-1) 
Blank 46.35 43.75 2.60 -49.08 

P1 64.29 61.69 2.60 -24.44 
P2 65.13 62.54 2.59 -21.93 

 

3.4. Adsorption Isotherms 

To better understand the adsorption phenomenon on the surfaces, various adsorption 
isotherm models, including Langmuir, Freundlich, Temkin, and Frumkin, were employed to 
analyze the adsorption mechanism. Examples of the adsorption process using isotherm 
models are reported elsewhere (Table 8). For corrosion, we calculated using data obtained 
using the EIS method. The linear equations for various isotherms are shown in Table 9. Figure 
10 shows the modified data. According to the data, the interaction between the investigated 
inhibitor and mild steel is in perfect agreement with the Langmuir isotherm (R2 = 1). The 
results obtained show that the Langmuir isotherm fits the experimental data perfectly for 
both compounds (P1 and P2), as evidenced by a correlation coefficient (R²) equal to 1.00 for 
both cases. This indicates that the Langmuir model accurately describes the adsorption of 
inhibitors onto the metal surface. The adsorption constants (K) of P1 and P2 are 1.26 107 and 
1.46 107 L/mol, respectively, suggesting a high affinity of these inhibitors for the metal 
surface. Indeed, the higher the K value, the greater the tendency of the inhibitor to bind 
effectively to the metal surface. In terms of adsorption free energy (∆Gads), both compounds 
show negative ∆G°ads values, namely -50.5 kJ/mol for P1 and -50.86 kJ/mol for P2, indicating 
that the adsorption process is spontaneous and thermodynamically favorable for both 
inhibitors. Although the values of K and ∆G°ads are very similar for both compounds, P2 
appears slightly more favorable due to the more negative value of ∆G°ads. In sum, both 
inhibitors exhibit strong, spontaneous adsorption to the metal surface, with a slightly higher 
efficiency for P2 [49,50]. 
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Table 8. Previous studies on the adsorption isotherm. 

No Title Reference 

1 The adsorptive potential of potassium hydroxide treated water lily leaves for malachite green 

dye removal from aqueous solution: Isotherms, kinetics and thermodynamics studies 

[51] 

2 Kinetic, isotherm and thermodynamic studies on the adsorption of methylene blue dye using 

Moringa oleifera pods and kernels 

[52] 

3 Removal of methyl orange from aqueous solution by biochar/Al2O3 nanocomposite [53] 

4 Synthesis of microcrystalline cellulose (MCC)-Fe3O4 for malachite green adsorption; Kinetics, 

isotherms, thermodynamics, and regeneration studies 

[54] 

5 Some parameters influencing the uptake of industrial acid blue 113 dye using chitin as natural 

adsorbent: Equilibrium and isotherm studies 

[55] 

6 Kinetics and isotherms studies of safranin adsorption onto two surfaces prepared from 

orange peels 

[56] 

7 Harnessing macroalgae Sargassum plagiophyllum-derived heterogeneous catalyst for 

biodiesel production 

[57] 

8 Synthesis of porous geopolymers using burnout materials for the removal of anionic 

surfactant from aqueous solution 

[58] 

9 Sustainable removal of dyes from wastewater using eggshell-derived calcium carbonate 

nanoparticles: Adsorption isotherms, kinetics, and thermodynamic analysis supporting SDGs 

[59] 

10 On the adsorption isotherms behavior of quinalozine as corrosion inhibitor for copper in 

nitric acid 

[60] 

11 Carbon particle size from galangal rhizomes as the sustainable adsorbent: Synthesis and 

mathematical calculation analysis in the adsorption isotherm characteristics 

[61] 

12 Biochar microparticles from pomegranate peel waste: Literature review and experiments in 

isotherm adsorption of ammonia 

[62] 

13 Red onion peel biomass carbon microparticles for ammonia adsorption for supporting 

hydrogen storage and SDGs with isotherm analysis 

[63] 

14 Utilizing cassava peel-derived carbon biochar for ammonia adsorption to support hydrogen 

storage and SDGs: Effect of microparticle size and isothermal analysis 

[64] 

15 Carbon biochar microparticles from mango peel as a sustainable adsorbent for ammonia 

storage in supporting hydrogen energy systems and SDGs 

[65] 

16 Utilization of orange peel-derived biochar for ammonia adsorption: Isotherm analysis and 

hydrogen storage prospective for supporting SDGs 

[66] 

17 Silica microparticles with various sizes from bamboo leave waste for ammonia adsorption 

completed with bibliometric literature review, isotherm adsorption, and proposal adsorption 

mechanism to support SDGs 

[67] 

18 Isotherm adsorption characteristics of 63-µm calcium carbonate particles prepared from 

eggshells waste 

[68] 

19 Isotherm adsorption of 40-µm zeolite particles for treatment of dye wastewater [69] 

20 Isotherm adsorption of 3000-µM natural zeolite [70] 

21 Sustainable carbon-based biosorbent particles from papaya seed waste: Preparation and 

adsorption isotherm 

[71] 

22 How to calculate adsorption isotherms of particles using two-parameter monolayer 

adsorption models and equations 

[72] 

23 Curcumin adsorption on zinc imidazole framework-8 particles: Isotherm adsorption using 

Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models 

[73] 
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Table 8 (continue). Previous studies on the adsorption isotherm. 

No Title Reference 

24 Adsorptive removal of methylene blue from aqueous solution using tea waste as a low-cost 

indigenous biosorbent: Mechanism of adsorption, equilibrium study, kinetics and isotherms 

[74] 

25 Adsorption isotherm, kinetic, and thermodynamic studies for the removal of Pb (II) and Zn 

(II) ions from mining wastewater using chitosan (CH) and chitosan–copper oxide 

nanocomposite (CMP) 

[75] 

26 Adsorption of cationic dyes from aqueous solution on Gossypium hirsitum fiber extract 

coated pozzolan: Kinetics and isotherm studies 

[76] 

27 Removal of crystal violet dye from aqueous solutions using chemically activated carbons by 

H3PO4 activation from corn cobs and corn roots: Kinetic and equilibrium isotherm studies 

[77] 

28 Adsorption of Fe (II) ion into chitosan/activated carbon composite: Isotherm and kinetics 

studies 

[78] 

 

Figure 10. Isothermal adsorption models for P1 and P2 tested at 298K: (a) Freundlich; (b) 
Frumkin; (c) Langmuir; and (d) Temkin. 
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Table 9. Adsorption parameters of the P1 and P2. 

Isotherm Compound R² K 
(L.mol-1) 

Parameters ∆G°ads 
(kJ.mol-1) 

Langmuir P1 1.00E+00 1.26E+07 slope 1.02E+00 -5.05E+04 
P2 1.00E+00 1.46E+07 1.03E+00 -5.08E+04 

Freundlich P1 6.99E-01 1.68345798 a 5.18E-02 -1.12E+04 
P2 9.00E-01 1.2918044 2.82E-02 -1.06E+04 

Temkin P1 7.17E-01 4.0419E+14 z -11.85677 -9.33E+04 
P2 9.08E-01 1.6364E+21 -19.952115 -1.31E+05 

Frumkin P1 4.67E-01 5436166707 a -4.05328 -6.55E+04 
P2 8.49E-01 9.5975E+15 -11.893875 -1.01E+05 

 

3.5. Surface Characterization (SEM-EDX) 

The SEM image of the mild steel surface, before being submerged, shows a smooth, 
uncorroded appearance with a few minor scratches from the mechanical polishing procedure. 
In the absence of an aggressive medium, this validates the metal surface’s initial integrity. 
However, the steel surface shows significant corrosion damage following six hours of 
submersion in a 1 M HCl solution. Thus, an active corrosion process is indicated by the 
surface's rough, etched appearance. On the other hand, there is a discernible improvement 
in surface condition when P1 and P2 are added to the aggressive solution (Figure 11). 
Therefore, the SEM micrographs show that the steel surfaces are noticeably smoother and 
have fewer prominent corrosion features. This implies that a protective adsorbed layer 
formed by these organic inhibitors on the metal surface serves as a defense against forceful 
ionic attack [79,80]. 

 Energy-dispersive X-ray spectroscopy (EDX) was also used to examine the surface 
composition of mild steel samples both before and after they were submerged in a 1 M HCl 
solution with and without the inhibitors. The EDX spectra show the appearance of a new peak 
connected to nitrogen (N) when the steel is treated with the P1 and P2 organic inhibitors 
(Figure 12). Since neither the base alloy nor the corrosive medium contains this element, their 
detection strongly implies that P1 and P2 inhibitor molecules have adhered to the metal 
surface. Nitrogen peaks usually come from the amine or imidazole functions. 

The protective layer that forms on the metal surface can be attributed either to strong 
interactions like covalent or coordinate bonds between the metal atoms and the functional 
groups of the inhibitor or to physical adsorption, i.e., weaker interactions such as van der 
Waals forces or electrostatic attraction. In both cases, the inhibitor molecules attach 
themselves to the active sites of the metal, creating a barrier that blocks aggressive species 
(Cl⁻) from attacking the surface, thereby reducing corrosion. A comparative analysis of the P1 
and P2 samples shows that both are mainly composed of iron (Fe). In sample P1, the iron 
content is 95.69 ± 0.20%, while in sample P2 it is slightly higher at 96.08 ± 0.20%. Although 
the difference seems small, it suggests that P1 retains a somewhat lower proportion of 
exposed iron at the surface compared to P2. This lower apparent iron content is often due to 
the presence of a protective layer that partially covers the metal surface. 
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Figure 11. SEM images of the mild steel surface submerged in the presence of P1 (a) and P2 
(b) compared to the blank sample (c). 
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Figure 12. EDX spectra of mild steel before (a) and after submergence in inhibited (b) and 
uninhibited solution (c). 
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4. CONCLUSION 
 

This study demonstrated that benzimidazolone derivatives P1 and P2 act as highly effective 
mixed-type corrosion inhibitors for mild steel in 1 M HCl. Both compounds exhibited strong 
and spontaneous adsorption following the Langmuir isotherm, forming protective films 
confirmed by SEM-EDX analysis. Electrochemical measurements and theoretical studies 
revealed that P1 provides slightly higher stability and stronger interaction with the steel 
surface compared to P2. These findings highlight the potential of benzimidazole derivatives 
as sustainable corrosion inhibitors, offering practical solutions to minimize industrial 
corrosion and reduce economic and environmental losses. 
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