Application of Artificial Neural Network to Predict Biodiesel Yield from Waste Frying Oil Transesterification

Agus Haryanto, Tri Wahyu Saputra, Mareli Telaumbanua, Amiera Citra Gita

Abstract


Used frying oil (UFO) has a great potential as feedstock for biodiesel production. This study aims to develop an artificial neural  network  (ANN)  model  to  predict  biodiesel  yield produced from base-catalyzed transesterification of UFO. The experiment  was  performed  with  100  mL  of  UFO  at  three different  molar  ratios  (oil:methanol) (namely 1:4,  1:5,  and 1:6), conducted with reaction temperatures of  30 to 55oC (raised by 5oC), and reaction time of 0.25, 0.5, 1, 2, 3, 6, 8, and 10 minutes. Prediction model was based on ANN model consisting  of  three  layers  with  27  combinations  of  three activation  functions  (tansig,  logsig,  purelin).  All  activation function  architectures  were  trained  using  Levenberg- Marquardt train type with 126 data set (87.5%) and learning rate  of  0.001.  Model  validation  used  18  data  set  (12.5%) measured at reaction time of 8 min. Results showed that two ANN models with activation function of logsig-purelin-logsig and purelin-logsig-tansig be the best with RRMSE of 2.41% and  2.44%  with  R2  of  0.9355  and  0.9391,  respectively. Predictions   of   biodiesel   yield   using   ANN   models   are significantly better than those of first-order kinetics.

Keywords


Biodiesel; ANN model; Waste frying oil; Transesterification; Activation function; Yield

Full Text:

PDF

References


Achten, W. M. J., Almeida, J., Fobelets, V., Bolle, E., Singh, V. P., Tewari, D. N., Verchot, L. V., & Muys, B. (2010). Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India. Applied Energy, 87(12), 3652–3660.

Al-Shanableh, F., Evcil, A., & Savaş M. A. (2016). Prediction of Cold Flow Properties of Biodiesel Fuel Using Artificial Neural Network. Procedia Computer Science, 102, 273–280.

Amini, J. (2008). Optimum learning rate in back-propagation neural network for classification of satellite images (IRS-1D). Scientia Iranica, 15(6), 558–567.

Anandhi, V. R., Manicka Chezian, R. M., & Parthiban, K. T. (2012). Forecast of demand and supply of pulpwood using Artificial Neural Network. International Journal of Computer Science and Telecommunications, 3(6), 35–38.

Balabin, R. M., Lomakina, E. I., & Safieva, R. Z. (2011). Neural network (ANN) approach to biodiesel analysis: Analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy. Fuel, 90(5), 2007–2015.

BPS (Statistics Indonesia). (2018). Rata-rata konsumsi per kapita seminggu beberapa macam bahan makanan penting, 2007-2017. https://www.bps.go.id (January 6, 2019).

Canakci, M., & Sanli, H. (2008). Biodiesel production from various feedstocks and their effects on the fuel properties. Journal of Industrial Microbiology & Biotechnology, 35(5), 431–441.

Chhetri, A. B., Watts, K. C., & Islam, M. R. (2008). Waste cooking oil as an alternate feedstock for biodiesel production. Energies, 1(1), 3–18.

De Oliveira, F. C., & Coelho, S. T. (2017). History, evolution, and environmental impact of biodiesel in Brazil: A review. Renewable and Sustainable Energy Reviews, 75, 168–179.

Despotovic, M., Nedic, V., Despotovic, D., & Cvetanovic, S. (2016). Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renewable and Sustainable Energy Reviews, 56, 246–260.

Dorofki, M., Elshafie, A. H., Jaafar, O., Karim, O. A., & Mastura, S. (2012). Comparison of Artificial Neural Network transfer functions abilities to simulate extreme runoff data. IPCBEE, 33, 39–44.

Ejikeme, P. M., Anyaogu, I. D., Ejikeme, C. L., Nwafor, N. P., Egbuonu, C. A. C., Ukogu, K., & Ibemesi, J. A. (2010). Catalysis in biodiesel production by transesterification processes – An insight. E-Journal of Chemistry, 7(4), 1120–1132.

Fajardo, C. A. G., Guerrero-Romero, A., & Sierra, F. E. (2011). Biodiesel production from waste cooking oil. In Biodiesel - Feedstocks and Processing Technologies (Ed. Stoytcheva, M). Intech Rijeka, 23–44.

Farobie, O., Hasanah, N., & Matsumura, Y. (2015). Artificial Neural Network modeling to predict biodiesel production in supercritical methanol and ethanol using spiral reactor. Procedia Environmental Sciences, 28, 214–223.

Fujita, H., Yoshimoto, A., Nakamo, K., Okuhara, K., Koide, N., & Supriatna, D. (2013). GHG emission production by waste cooking oil recycling in environmental partnership program of Bogor City. In Proceedings of 2nd International Conference on Adaptive and Intelligent Agroindustry (ICAIA), 10-16).

Ganesan, K., Sukalingam, K., & Xu, B. (2017). Impact of consumption of repeatedly heated cooking oils on the incidence of various cancers – A critical review. Critical Reviews in Food Science and Nutrition, 59(3), 488-505.

Giwa, S. O., Adekomaya, S. O., Adama, K. O., & Mukaila, M. O. (2015). Prediction of selected biodiesel fuel properties using artificial neural network. Frontiers in Energy, 9(4), 433–445.

Guo, R., & Hanaki, K. (2010). Potential and life cycle assessment of biodiesel production in China. Journal of Renewable and Sustainable Energy, 2(3), 033107.

Harsono, S. S., Prochnow, A., Grundmann, P., Hansen, A., & Hallmann, C. (2012). Energy balances and greenhouse gas emissions of palm oil biodiesel in Indonesia. GCB Bioenergy, 4(2), 213–228.

Haryanto, A., Gita, A. C., Saputra, T. W., & Telaumbanua, M. (2019). Kinetics of biodiesel synthesis from used frying oil through base transesterification reaction. International Journal of Renewable Energy Development (submitted).

Hassan, M. N. A., Jaramillo, P., & Griffin, W. M. (2011). Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector’s energy security. Energy Policy, 39(5), 2615–2625.

Hindryawati, N., Maniam, G. P., Karim, M. R., & Chong, K. F. (2014). Transesterification of used cooking oil over alkali metal (Li, Na, K) supported rice husk silica as potential solid base catalyst. Engineering Science and Technology, an International Journal, 17(2), 95–103.

Hou, J., Zhang, P., Yuan, X., & Zheng, Y. (2011). Life cycle assessment of biodiesel from soybean, jatropha and microalgae in China conditions. Renewable and Sustainable Energy Reviews, 15(9), 5081–5091.

Jaarin, K., Masbah, N., & Kamisah, Y. (2018). Heated oil and its effect on health. In Food Quality: Balancing Health and Disease (Eds. Holban, A.M. & Mihai, A.). Academic Press.

Jain, A. K., Mao, J., & Mohiudin, K. M. (1996). Artificial neural network : A tutorial. Computer, 29(3), 31–44.

Karsoliya, S. (2012). Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. International Journal of Engineering Trends and Technology, 3(6), 714–717.

Khan, M. M., Khan, R. U., Khan, F. Z., & Athar, M. (2013). Impacts of biodiesel on the environment. International Journal of Environmental Engineering and Management, 4(4), 345–350.

Kumar, S., Singh, J., Nanoti, S. M., & Garg, M. O. (2012). A comprehensive life cycle assessment (LCA) of Jatropha biodiesel production in India. Bioresource Technology, 110, 723–729.

Kusuma, I. W., & Abadi, A. M. (2011). Aplikasi model backpropagation neural network untuk perkiraan produksi tebu pada PT. Perkebunan Nusantara IX. Seminar Nasional Matematika dan Pendidikan Matematika.

Lavalle, A., Curia, L., Lavalle, L., Giaveno, A., & Donati, E. (2012). Artificial Neural Network to predict the growth of leptospirillum ferrooxidans in 9K defined medium. International Journal of Engineering Research and Applications, 2, 1406–1416.

Leong, X. F., Ng, C. Y., Jaarin, K., & Mustafa, M. R. (2015). Effects of repeated heating of cooking oils on antioxidant content and endothelial function. Austin Journal of Pharmacology and Therapeutics, 3(2), 1–7.

Li, M. F., Tang, X. P., Wu, W., & Liu, H. B. (2013). General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Conversion and Management, 70, 139–148.

Malça, J., & Freire, F. (2011). Life-cycle studies of biodiesel in Europe: A review addressing the variability of results and modeling issues. Renewable and Sustainable Energy Reviews, 15(1), 338–351.

Narasimharao, K., Lee, A., & Wilson, K. (2007). Catalysts in production of biodiesel: A review. Journal of Biobased Materials and Bioenergy, 1(1), 1–12.

Özgür, C., & Tosun, E. (2017). Prediction of density and kinematic viscosity of biodiesel by artificial neural networks. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(10), 985–991.

Paltsev, S. (2016). The complicated geopolitics of renewable energy. Bulletin of the Atomic Scientists, 72(6), 390–395.

Seo, K. (2013). A Simulation study on an Artificial Neural Network based automatic control system of a plant factory. International Journal of Control and Automation, 6, 127–136.

Sheehan, J., Camobreco, V., Duffield, J., Graboski, M., & Shapouri, H. (1998). Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. Final Report. National Renewable Energy Laboratory, NREL/SR-580-24089.

Silalertruksa, T., & Gheewala, S. H. (2012). Environmental sustainability assessment of palm biodiesel production in Thailand. Energy, 47(1), 306-314.

Siregar, K., Tambunan, A. H., Irwanto, A. K., Wirawan, S. S., & Araki, T. (2015). A comparison of life cycle assessment on oil palm (Elaeis guineensis Jacq.) and physic nut (Jatropha curcas Linn.) as feedstock for biodiesel production in Indonesia. Energy Procedia, 65, 170-179.

Thoai, D. G., Tongurai, C., Prasertsit, K., & Kumar, A. (2018). Predictive capability evaluation of RSM and ANN in modeling and optimization of biodiesel production from palm (Elaeis guineensis) oil. International Journal of Applied Engineering Research, 13(10), 7529-7540.

Widodo, P. P., Handayanto, R. T., & Herlawati (2013). Penerapan Data Mining dengan MATLAB. Rekayasa Sains, Bandung.




DOI: https://doi.org/10.17509/ijost.v5i1.23099

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Indonesian Journal of Science and Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.
StatCounter - Free Web Tracker and Counter
View My Stats