Pyrolysis-GC/MS Analysis of Fast Growing Wood Macaranga Species

R.R. Dirgarini J.N. Subagyono, Ying Qi, Alan L. Chaffee, Rudianto Amirta, Marc Marshall

Abstract


Py-GC/MS analysis of six different species of fast growing Macaranga wood has been studied. Flash pyrolysis was conducted at different temperatures (250-850 oC) under a flow of helium followed by GC/MS analysis of the products. The total pyrolysis yields of the six different species of Macaranga were mostly between 40 and 90% within the range of pyrolysis temperature applied.  Pyrolysis of the woody biomass produced compounds which are mostly derived from thermal degradation or volatilization of lignin and cellulose/hemicellulose, the original major constituents of the biomass. The Py-GC/MS technique indicated that M. gigantea was the most potential species for biofuel production and the optimum pyrolysis temperature to produce high yields of bio-oil was 450 oC.


Keywords


Py-GC/MS, Macaranga, Wood

Full Text:

PDF

References


Aho, A., Kumar, N., Eränen, K., Holmbom, B., Hupa, M., Salmi, T., and Murzin, D. Y. (2008). Pyrolysis of softwood carbohydrates in a fluidized bed reactor. International Journal of Molecular Sciences, 9(9), 1665-1675.

Amirta, R., Mukhdlor, A., Mujiasih, D., Septia, E., Supriadi, and Susanto, D. (2016a). Suitability and availability analysis of tropical forest wood species for ethanol production: a case study in East Kalimantan. Biodiversitas Journal of Biological Diversity, 17(2), 544-552.

Amirta, R., Nafitri, S. I., Wulandari, R., Yuliansyah, Suwinarti, W., Candra, K. P., and Watanabe, T. (2016b). Comparative characterization of Macaranga species collected from secondary forests in East Kalimantan for biorefinery of unutilized fast growing wood. Biodiversitas Journal of Biological Diversity, 17(1), 116-123.

Anca-Couce, A. (2016). Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Progress in Energy and Combustion Science, 53, 41-79.

Bai, X., Kim, K. H., Brown, R. C., Dalluge, E., Hutchinson, C., Lee, Y. J., and Dalluge, D. (2014). Formation of phenolic oligomers during fast pyrolysis of lignin. Fuel, 128, 170-179.

Brebu, M., and Vasile, C. (2010). Thermal Degradation of Lignin: A review. Cellulose Chemistry and Technology, 44(9), 353-363.

Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and bioenergy, 38, 68-94.

Burhenne, L., Messmer, J., Aicher, T., and Laborie, M. P. (2013). The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. Journal of Analytical and Applied Pyrolysis, 101, 177-184.

Carrier, M., Windt, M., Ziegler, B., Appelt, J., Saake, B., Meier, D., and Bridgwater, A. (2017). Quantitative insights into the fast pyrolysis of extracted cellulose, hemicelluloses, and lignin. ChemSusChem, 10(16), 3212.

Chum, H., Diebold, J., Scahill, J., Johnson, D. K., Black, S., Schroeder, H., and Kreibich, R. E. (1989). Biomass pyrolysis oil feedstocks for phenolic adhesives. ACS Symposium Series 385 135-151.

de Menezes, F. F., Rencoret, J., Nakanishi, S. C., Nascimento, V. M., Silva, V. F. N., Gutiérrez, A., and de Moraes Rocha, G. J. (2017). Alkaline pretreatment severity leads to different lignin applications in sugar cane biorefineries. ACS Sustainable Chemistry and Engineering, 5(7), 5702-5712.

Galetta, M. A., Reina, L., Resquin, F., Mantero, C., González-Pérez, J. A., Almendros, G., and González-Vila, F. J. (2014). Chemometric appraisal of lignin pyrolytic assemblages from Eucalyptus woods relevant for pulping in Uruguay. Journal of Analytical and Applied Pyrolysis, 109, 296-303.

Gerber, L., Öhman, D., Kumar, M., Ranocha, P., Goffner, D., and Sundberg, B. (2016). High‐throughput microanalysis of large lignocellulosic sample sets by pyrolysis‐gas chromatography/mass spectrometry. Physiologia plantarum, 156(2), 127-138.

Hatcher, P. G., Lerch III, H. E., and Verheyen, T. V. (1989). Organic geochemical studies of the transformation of gymnospermous xylem during peatification and coalification to subbituminous coal. International Journal of Coal Geology, 13(1), 65-97.

Hatcher, P. G., Wilson, M. A., Vassalo, M., and Lerch III, H. E. (1990). Studies of angiospermous woods in Australian brown coal by nuclear magnetic resonance and analytical pyrolysis: new insight into early coalification. International Journal of Coal Geology, 16(1), 205-207.

Heidari, A., Khaki, E., Younesi, H., and Lu, H. R. (2019). Evaluation of fast and slow pyrolysis methods for bio-oil and activated carbon production from eucalyptus wastes using a life cycle assessment approach. Journal of Cleaner Production, 241, 118394.

Hu, J., Wu, S., Jiang, X., and Xiao, R. (2018). Structure–reactivity relationship in fast pyrolysis of lignin into monomeric phenolic compounds. Energy and Fuels, 32(2), 1843-1850.

Jackson, M. A. (2013). Ketonization of model pyrolysis bio-oil solutions in a plug-flow reactor over a mixed oxide of Fe, Ce, and Al. Energy and fuels, 27(7), 3936-3943.

Jiang, G., Nowakowski, D. J., and Bridgwater, A. V. (2010). Effect of the temperature on the composition of lignin pyrolysis products. Energy and Fuels, 24(8), 4470-4475.

Jiang, W., Kumar, A., and Adamopoulos, S. (2018). Liquefaction of lignocellulosic materials and its applications in wood adhesives—A review. Industrial Crops and Products, 124, 325-342.

Jones, R. W., Reinot, T., and McClelland, J. F. (2010). Molecular analysis of primary vapor and char products during stepwise pyrolysis of poplar biomass. Energy and fuels, 24(9), 5199-5209.

Kiswanto, Tsuyuki, S., Mardiany, and Sumaryono. (2018). Completing yearly land cover maps for accurately describing annual changes of tropical landscapes. Global Ecology and Conservation, 13, e00384.

Kleinert, M., and Barth, T. (2008). Phenols from lignin. Chemical Engineering and Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 31(5), 736-745.

Kristensen, R., Coulson, S., and Gordon, A. (2009). THM PyGC–MS of wood fragment and vegetable fibre forensic samples. Journal of Analytical and Applied Pyrolysis, 86(1), 90-98.

Liu, C., Wang, H., Karim, A. M., Sun, J., and Wang, Y. (2014). Catalytic fast pyrolysis of lignocellulosic biomass. Chemical Society Reviews, 43(22), 7594-7623.

Lu, Q., Tian, H.-y., Hu, B., Jiang, X.-y., Dong, C.-q., and Yang, Y.P. (2016). Pyrolysis mechanism of holocellulose-based monosaccharides: The formation of hydroxyacetaldehyde. Journal of Analytical and Applied Pyrolysis, 120, 15-26.

Lyu, G., Wu, S., and Zhang, H. (2015). Estimation and Comparison of Bio-Oil Components from Different Pyrolysis Conditions. Frontiers in Energy Research, 3(28), 1-11.

Mohan, D., Pittman Jr, C. U., and Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. Energy and fuels, 20(3), 848-889.

Mulholland, J. A., Lu, M., and Kim, D. H. (2000). Pyrolytic growth of polycyclic aromatic hydrocarbons by cyclopentadienyl moieties. Proceedings of the Combustion Institute, 28(2), 2593-2599.

Mullen, C. A., and Boateng, A. A. (2008). Chemical composition of bio-oils produced by fast pyrolysis of two energy crops. Energy and fuels, 22(3), 2104-2109.

Obst, J. R. (1983). Analytical pyrolysis of hardwood and softwood lignins and its use in lignin-type determination of hardwood vessel elements. Journal of Wood Chemistry and Technology, 3(4), 377-397.

Ohra-Aho, T., Gomes, F. J. B., Colodette, J. L., and Tamminen, T. (2018). Carbohydrate composition in Eucalyptus wood and pulps–Comparison between Py-GC/MS and acid hydrolysis. Journal of Analytical and Applied Pyrolysis, 129, 215-220.

Paine III, J. B., Pithawalla, Y. B., and Naworal, J. D. (2019). Carbohydrate pyrolysis mechanisms from isotopic labeling. Part 5. The pyrolysis of D-glucose: The origin of the light gases from the D-glucose molecule. Journal of Analytical and Applied Pyrolysis, 138, 70-93.

Pastorova, I., Botto, R. E., Arisz, P. W., and Boon, J. J. (1994). Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydrate Research, 262(1), 27-47.

Pouwels, A. D., and Boon, J. J. (1990). Analysis of beech wood samples, its milled wood lignin and polysaccharide fractions by curie-point and platinum filament pyrolysis-mass spectrometry. Journal of Analytical and Applied Pyrolysis, 17(2), 97-126.

Pouwels, A. D., Eijkel, G. B., and Boon, J. J. (1989). Curie-point pyrolysis-capillary gas chromatography-high-resolution mass spectrometry of microcrystalline cellulose. Journal of Analytical and Applied Pyrolysis, 14(4), 237-280.

Ralph, J., and Hatfield, R. D. (1991). Pyrolysis-GC-MS characterization of forage materials. Journal of Agricultural and Food Chemistry, 39(8), 1426-1437.

Sáiz-Jiménez, C., and De Leeuw, J. W. (1984). Pyrolysis-gas chromatography-mass spectrometry of isolated, synthetic and degraded lignins. Organic Geochemistry, 6, 417-422.

Shen, D., Jin, W., Hu, J., Xiao, R., and Luo, K. (2015). An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: Structures, pathways and interactions. Renewable and Sustainable Energy Reviews, 51, 761-774.

Shi, J., Xing, D., and Lia, J. (2012). FTIR studies of the changes in wood chemistry from wood forming tissue under inclined treatment. Energy Procedia, 16, 758-762.

Subagyono, D. J., Marshall, M., Fei, Y., Jackson, W. R., and Chaffee, A. L. (2015a). Thermo-chemical reactions of algae, grape marc and wood chips using a semi-continuous/flow-through system. Fuel, 158, 927-936.

Subagyono, D. J. N., Marshall, M., Jackson, W. R., and Chaffee, A. L. (2015b). Improvement in liquid fuel product quality from reactions of grape marc with CO/H2O. Fuel, 159, 234-240.

Subagyono, D. J., Marshall, M., Jackson, W. R., Chow, M., and Chaffee, A. L. (2014). Reactions with CO/H2O of two marine algae and comparison with reactions under H2 and N2. Energy and fuels, 28(5), 3143-3156.

Subagyono, D. J. N., Marshall, M., Jackson, W. R., Fei, Y., and Chaffee, A. L. (2016a). Thermochemical Reactions of Blue Gum and Fossil Wood with CO/H2O: Some Mechanistic Comments. Energy and Fuels, 30(2), 1039-1049.

Subagyono, D. J. N., Qi, Y., Jackson, W. R., and Chaffee, A. L. (2016b). Pyrolysis-GC/MS analysis of biomass and the bio-oils produced from CO/H2O reactions. Journal of Analytical and Applied Pyrolysis, 120, 154-164.

Syamsudin, S., Purwati, S., Surachman, A., and Wattimena, R. B. I. (2016). Isothermal Pyrolysis of sludge cake and pulp reject from kraft pulp mill. Jurnal Selulosa, 6(02), 12.

Thangalazhy-Gopakumar, S., Adhikari, S., Gupta, R. B., and Fernando, S. D. (2011). Influence of pyrolysis operating conditions on bio-oil components: A microscale study in a pyroprobe. Energy and Fuels, 25(3), 1191-1199.

Wagner, A., Tobimatsu, Y., Phillips, L., Flint, H., Torr, K., Donaldson, L., and Ralph, J. (2011). CCoAOMT suppression modifies lignin composition in Pinus radiata. The Plant Journal, 67(1), 119-129.

Webster, G. L. (1994). Classification of the euphorbiaceae. Annals of the missouri botanical garden, 81(1), 3-32.

Xing, R., Qi, W., and Huber, G. W. (2011). Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries. Energy and Environmental Science, 4(6), 2193-2205.

Zhang, S., Yang, X., Zhang, H., Chu, C., Zheng, K., Ju, M., and Liu, L. (2019). Liquefaction of biomass and upgrading of bio-oil: a review. Molecules, 24(12), 2250.

Zmiewski, A. M., Hammer, N. L., Garrido, R. A., Misera, T. G., Coe, C. G., and Satrio, J. A. (2015). Exploring the products from pinewood pyrolysis in three different reactor systems. Energy and Fuels, 29(9), 5857-5864.




DOI: https://doi.org/10.17509/ijost.v6i1.31917

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Indonesian Journal of Science and Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.
StatCounter - Free Web Tracker and Counter
View My Stats