Study of the Catecholase Activity of new catalysts Based on Copper (II) and Heterocyclic Ligands

Rafika El Ati, Haytham Bouammali, Mohamed El Kodadi, El Bekkay Yousfi, Rachid Touzani, Belkheir Hammouti


In this work, we are interested in finding new catalysts for catecholase, whose principle is based on the oxidation reaction of catechol to o-quinone. We approached the synthesis of the threes tripod ligands based on pyrazole in a condensation reaction and its characterization by IR, 13C NMR, 1H NMR spectroscopy, then we evaluated the catalytic properties of certain complexes formed in situ to catalyze the oxidation reaction of catechols to o-quinones. The aim is to find the right models to reproduce the catalytic activity of the enzyme (catecholase), we used complexes formed in situ by pyrazole derivatives with Copper salts. Among these complexes, the complex L4/Cu(CH3COO)2 showed good catalytic activity of the combination (1ligand/2metal) in MeOH for this reaction, with a speed Vmax equal to 69.38 μmol.L-1.min-1 and a low value of Km equal to 0.019 mol.L-1. We have demonstrated that the nature of concentration, ligand, solvent, and copper salts, influenced strongly the catecholase activity.


Catalyst; Catechol; Catecholase; O-quinone; Oxidation; Pyrazole

Full Text:



Abrigach, F. Rokni, Takfaoui, A. Khoutoul, M., Doucet, H., Asehraou, A., and Touzani, R. (2018). In vitro screening, homology modeling and molecular docking studies of some pyrazole and imidazole derivatives. Biomed Pharmacother, 103, 653-661.

Abrigach, F., Bouchal, B., Riant, O., Mace, Y., Takfaoui, A., Radi, S., Oussaid, A., Bellaoui, M., and Touzani, R. (2016). New N, N, N’, N’-tetradentate Pyrazoly Agents: Synthesis and Evaluation of their Antifungal and Antibacterial Activities. Medicinal Chemistry, 12(1), 83-89, 2016.

Abrigach, F., Karzazi, Y., Benabbes, R., El Youbi, M., Khoutoul, M., Taibi, N., Karzazi, N., Benchat, N., Bouakka, M., Saalaoui, E., and Touzani, R. (2017). Synthesis, biological screening, POM, and 3D-QSAR analyses of some novel pyrazolic compounds. Medicinal Chemistry Research, 26(8), 1784-1795.

Bouabdallah, I., Touzani, R., Zidane, I., and Ramdani, A. (2007a). Synthesis of new tripodal ligand: N, N-bis [(1, 5-dimethylpyrazol-3-yl) methyl] benzylamine.: Catecholase activity of two series of tripodal ligands with some copper (II) salts. Catalysis Communications, 8, 707-712.

Bouabdallah, I., Touzanin, R., Zidane, I., and Ramdani, A. (2007b). Effect of two isomeric tetrapyrazolyl ligands on the catalytic oxidation of 3,5-di-tert-butylcatechol. Journal of the Iranian Chemical Society, 3, 299–303.

Bouchal, B., Abrigach, F., Takfaoui, A. Errahhali, M. E., Errahhali, M. E., Dixneuf, P. H., Doucet, H., Touzani, R., and Bellaoui, M. (2019). Identification of novel antifungal agents: antimicrobial evaluation, SAR, ADME-Tox and molecular docking studies of a series of imidazole derivatives. BMC Chemistry, 13(1), 100.

Boussalah, N., Touzani, R., Souna, F., Himri, I., Bouakka, M., Hakkou, A., Ghalem, S., and ElKadiri, S. (2013). Antifungal activities of amino acid ester functional pyrazolyl compounds against Fusarium oxysporum f.sp. albedinis and Saccharomyces cerevisiae yeast. Journal of Saudi Chemical Society, 17(1) 17-21.

Boussalah, N., Touzani, R., Bouabdallah, I., El Kadiri S., and Ghalem, S. (2009). Synthesis, structure and catalytic properties of tripodal amino-acid derivatized pyrazole-based ligands. Journal of Molecular Catalysis A: Chemical, 30, 113-117.

Camargo, T. P., Maia, F. F., Chaves, C., de Souza, B., Bortoluzzi, A. J., Castilho, N., Bortolotto, T., Terenzi, H., Castellano, E. E., Haase, W., Tomkowicz, Z., Peralta, R. A., and Neves, A. (2015). Synthesis, characterization, hydrolase and catecholase activity of a dinuclear iron(III) complex: Catalytic promiscuity. Journal of Inorganic Biochemistry, 146, 77–88.

Carrea, G., and Riva, S. (2000). Properties and synthetic applications of enzymes in organic solvents. Angewandte Chemie International Edition, 39, 2226-2254.

Dey, S. K., and Mukherjee, A. (2016). Catechol oxidase and phenoxazinone synthase: Biomimetic functional models and mechanistic studies. Coordination Chemistry Reviews, 310, 80–115.

Driessen, W.L. (1982). Synthesis of some new pyrazole‐containing chelating agents. Recueil des Travaux Chimiques des Pays-Bas, 101, 441-443.

El Ati, R., Takfaoui, A., El Kodadi, M., Touzani, R. E.B.Yousfi, Almalki, F.A., and Ben Hadda, T. (2019). Catechol oxidase and Copper(I/II) complexes derived from bipyrazol ligand: Synthesis, molecular structure investigation of new biomimetic functional model and mechanistic study. Materials Today: Proceedings, 13(3), 1229-1237.

El Kodadi, M., Malek, F., Touzani, R., and Ramdani A. (2008). Synthesis of new tripodal ligand 5-(bis (3, 5-dimethyl-1H-pyrazol-1-ylmethyl) amino) pentan-1-ol, catecholase activities studies of three functional tripodal pyrazolyl N-donor ligands, with different copper (II) salts. Catalysis Communications, 9, 966-969.

Gamez, P., Aubel, P.G., Driessen, W.L., and Reedijk, J. (2001). Homogeneous bio-inspired copper-catalyzed oxidation reactions. Chemical Society Reviews, 30, 376-385.

Gunawan, R., and Nandiyanto, A. B. D. How to Read and Interpret 1H-NMR and 13C-NMR Spectrums. Indonesian Journal of Science and Technology, 6(2), 267-298.

Hammouti, B., Dafali, A., Touzani, R., and Bouachrine, M. (2012). Inhibition of copper corrosion by bipyrazole compound in aerated 3% NaCl. Journal of Saudi Chemical Society, 16(4), 413-418.

Homrich, A. M., Farias, G., Amorim, S. M., Xavier, F. R., Gariani, R. A., Neves, A., Terenzi , H. and Peralta, R. A. (2021). Effect of chelate ring size of binuclear copper(II) complexes on catecholase activity and DNA cleavage. European Journal of Inorganic Chemistry, 2021(18), 1710-1721.

Jiang, H., and Lai, W. (2020). Monophenolase and catecholase activity of Aspergillus oryzae catechol oxidase: insights from hybrid QM/MM calculations. Organic and Biomolecular Chemistry, 18, 5192–5202.

Kaddouri, Y., Abrigach, F., Mechbal, N., Karzazi, Y., El Kodadi, M., Aouniti, A., and Touzani, R.(2019). Pyrazole Compounds : Synthesis, molecular structure, chemical reactivity, experimental and theoretical DFT FTIR spectra. Materials Today: Proceedings, 13(3), 956-963.

Kaddouri, Y., Abrigach, F., Yousfi, E. B., El Kodadi, M., and Touzani, R. (2020). New thiazole, pyridine and pyrazole derivatives as antioxidant candidates: Synthesis, DFT calculations and molecular docking study. Heliyon, 6(1), e03185.

Klabunde, T., Eicken, C., Saccettini, J. C. and Krebs, B. (1998). Crystal structure of a plant catechol oxidase containing a dicopper center. Nature Structural Biology, 5(12), 1084-1090.

Mendoza-Quijano, M. R., Ferrer Sueta, G., Flores-Álamo, M., Aliaga-Alcalde, N., Gómez-Vidales, V., Ugalde-Saldívar, V. M., and Gasque, L. (2012). Mechanistic insight on the catecholase activity of dinuclear copper complexes with distant metal center. Dalton Transactions, 41, 4985-4997.

Mondal, D., and Chandra Majee, M. (2017). Synthesis and structural characterization of a new high-valent bis(oxo)-bridged manganese(IV) complex and its catechol oxidase activity. Inorganica Chimica Acta, 465, 70–77.

Mouadili, A., Attayibat, A., El Kadiri, S., Radi, S., and Touzani, R. (2013). Catecholase activity investigations using in situ copper complexes with pyrazole and pyridine based ligands. Applied Catalysis A: General, 454, 93–99.

Mouadili, A., Zerrouki A., Herrag, L., Hammouti, B., El Kadiri, S.,Touzani, R. (2012). Catechol oxidation: Activity studies using electron-rich nitrogen-based ligands. Research on Chemical Intermediates, 38, 2427-2433.

Mukherjee, S., Weyhermüller, T., Bothe, E., Wieghardt, K., and Chaudhuri, P. (2004). Dinuclear and mononuclear manganese (IV)-radical complexes and their catalytic catecholase activity. Dalton Transactions, 22, 3842-3853.

Nandiyanto, A. B. D., Oktiani, R., and Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97-118.

Neves, A., Bortoluzzi, A. J., Jovito, R., Peralta, R. A., de Souza, B., Szpoganicz, B., Joussef, A. C., Terenzi, H., Severino, P. C., Fischer, F. L., Schenk, G., Riley, M. J., Smith, S. J., and Gahan, L. R. (2010). Catalytic Promiscuity: Catecholase-like Activity and Hydrolytic DNA Cleavage Promoted by a Mixed-Valence FeIIIFeII Complex. Journal of the Brazilian Chemical Society, 21(7), 1201–1212.

Osório, R. E. H. M. B., Peralta, Bortoluzzi, R. A., A. J., De Almeida, V. R., Szpoganicz, B., Fischer, F. L., Terenzi, H., Mangrich, A. S., Mantovani, K. M., Ferreira, D. E. C., Rocha, W. R., Haase, W., Tomkowicz, Z., Dos Anjos, A, and Neves, A. . (2012), Synthesis, magnetostructural correlation, and catalytic promiscuity of unsymmetric dinuclear copper(II) complexes: Models for catechol oxidases and hydrolases. Inorganic Chemistry, 51(3), 1569–1589.

Paul, L., Banerjee, B., Bhaumik, A., and Ali, M. (2017). Catecholase activity of a manganese Schiff base complex functionalized over SBA-15 in aqueous heterogeneous medium. Microporous Mesoporous Mater, 249, 78–87.

Peralta, R. A., Bortoluzzi, A. J., Szpoganicz, B., Brandão, T. A. S., E. E., Castellano, Castellano, De Oliveira, M. B., Severino, P. C., Terenzi, H., and Neves, A. (2010). Catecholase and DNase activities of copper(II) complexes containing phenolate-type ligands. Journal of Physical Organic Chemistry, 23(10), 1000–1013.

Pratiwi, R. A., and Nandiyanto, A. B. D. (2022) How to Read and Interpret UV-VIS Spectrophotometric Results in Determining the Structure of Chemical Compounds. Indonesian Journal of Educational Research and Technology, 2(1), 1-20.

Punniyamurthy, and T., Rout, L. (2008). Recent advances in copper-catalyzed oxidation of organic compounds. Coordination Chemistry Reviews, 252, 134-154.

Ramsden, C. A., and Riley, P. A. (2014). Tyrosinase: The four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorganic and Medicinal Chemistry, 22(8), 2388–2395.

Saddik, R., Abrigach, F., Benchat, N., El Kadiri, S., Hammouti, B., and Touzani, R. (2012). Catecholase activity investigation for pyridazinone-and thiopyridazinone-based ligands. Research on Chemical Intermediates, 38, 1987-1998.

Saddik, R., Khoutoul, M., Benchat, N., Hammouti, B., El Kadiri, S., and Touzani, R. (2012). Evaluation of catalytic activity of imidazolo [1, 2-a] pyridine derivatives: Oxidation of catechol. Research on Chemical Intermediates, 38, 2457-2470.

Solomon, E.I., Sundaram, U.M., Machonkin, T.E. (1996). multicopper oxidases and oxygenases. Chemical Reviews, 96, 2563–2606.

Toubi, Y., Touzani, R., Radi, S., and El Kadiri, S. (2012). Synthesis, characterization and catecholase activity of copper (II) complexes with bispyrazole tri-podal Ligands. Journal of Materials and Environmental Science, 3, 328-341.

Touzani, R., Vasapollo, G., Scorrano, S., Del Sole, R., Manera, M. G., Rella, R., and El Kadiri, S. (2011). New complexes based on tridentate bispyrazole ligand for optical gas sensing. Materials Chemistry and Physics, 126(1-2), 375-380.

Xue, F., Zhao, J., Hor, and T. S. A. (2011). Iron(II) complexes with functionalized amine-pyrazolyl tripodal ligands in the cross-coupling of aryl Grignard with alkyl halides. Dalton Transactions, 40, 8935-8940.

Zerrouki, A., Touzani, R., and El Kadiri, S. (2011). Synthesis of new derivatized pyrazole based ligands and their catecholase activity studies. Arabian Journal of Chemistry, 4, 459-464.



  • There are currently no refbacks.

Copyright (c) 2021 Indonesian Journal of Science and Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.
StatCounter - Free Web Tracker and Counter
View My Stats