Mitochondrial Biogenesis Induced by Exercise and Nutrients: Implication for Performance and Health Benefits

Kazumi Masuda, Thomas Jue, Ronald D. Ray Hamidie


The skeletal muscle occupies about 40% of body mass, one of the largest organs in the body, and it has great plasticity in response to physiological stressors and then alters the contractile and metabolic properties of the muscles. Therefore, healthy status of muscle affects health status of whole body. Mitochondria are abundantly present in mammalian muscle cells, known as the power plants of the cell to generate adenosine triphosphate (ATP) with oxygen. The muscle health depends on the mitochondrial function. In aging and some of metabolic disease states, the mitochondrial function is defected. Some parts of this defect result from lower physical activity and nutritional status. The exercise is well-known as a major strategy to induce mitochondrial biogenesis and upregulation of the mitochondrial function. Recently some nutrients are also suggested as ligands for transcription of the mitochondrial proteins. We also recently found insight of protein interaction with mitochondria that will possibly augment mitochondrial respiratory potential. The present review article introduces some recent research evidences relating to mitochondrial quality control, mitochondrial biogenesis mediated by both exercise and nutrients and an interaction of protein with mitochondria to facilitate mitochondrial respiration.


Mitochondria; Exercise; Nutrients; Biogenesis; Implication; Health Benefits

Full Text:



Bach, D., Pich, S., Soriano, F. X., Vega, N., Baumgartner, B., Oriola, J., Daugaard J R, Lloberas J, Camps M, Zierath J R, & Rabasa-Lhoret, R. (2003). Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism A novel regulatory mechanism altered in obesity. Journal of Biological Chemistry, 278(19), 17190-17197.

Bereiter-Hahn, J. (1990). Behavior of mitochondria in the living cell. International review of cytology, 122, 1-63.

Chen, H., Vermulst, M., Wang, Y. E., Chomyn, A., Prolla, T. A., McCaffery, J. M., & Chan, D. C. (2010). Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell, 141(2), 280-289.

Dallas, C., Gerbi, A., Tenca, G., Juchaux, F., & Bernard, F. X. (2008). Lipolytic effect of a polyphenolic citrus dry extract of red orange, grapefruit, orange (SINETROL) in human body fat adipocytes. Mechanism of action by inhibition of cAMP-phosphodiesterase (PDE). Phytomedicine, 15(10), 783-792.

Flögel, U., Laussmann, T., Gödecke, A., Abanador, N., Schäfers, M., Fingas, C. D., Metzger S, Levkau B, Jacoby C, & Schrader, J. (2005). Lack of myoglobin causes a switch in cardiac substrate selection. Circulation research, 96(8), e68-e75.

Garnier, A., Fortin, D., Zoll, J., N’Guessan, B., Mettauer, B., Lampert, E., Veksler V., & Ventura-Clapier, R. (2005). Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. The FASEB Journal, 19(1), 43-52.

Garry, D. J., Bassel‐Duby, R. S., Richardson, J. A., Grayson, J., Neufer, P. D., & Williams, R. S. (1996). Postnatal development and plasticity of specialized muscle fiber characteristics in the hindlimb. Developmental genetics, 19(2), 146-156.

Garry, D. J., Ordway, G. A., Lorenz, J. N., Radford, N. B., Chin, E. R., Grange, R. W., Bassel-Duby R., & Williams, R. S. (1998). Mice without myoglobin. Nature, 395(6705), 905-908.

Gödecke, A., Flögel, U., Zanger, K., Ding, Z., Hirchenhain, J., Decking, U. K., & Schrader, J. (1999). Disruption of myoglobin in mice induces multiple compensatory mechanisms. Proceedings of the National Academy of Sciences, 96(18), 10495-10500.

Goldberg, D. M., Yan, J., & Soleas, G. J. (2003). Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clinical biochemistry, 36(1), 79-87.

Grubisha, O., Smith, B. C., & Denu, J. M. (2005). Small molecule regulation of Sir2 protein deacetylases. Febs Journal, 272(18), 4607-4616.

Guyton, G. P., Stanek, K. S., Schneider, R. C., Hochachka, P. W., Hurford, W. E., Zapol, D. G.,Liggins, G.C., & Zapol, W. M. (1995). Myoglobin saturation in free-diving Weddell seals. Journal of Applied Physiology, 79(4), 1148-1155.

Hood, D. A. (2001). Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. Journal of applied physiology, 90(3), 1137-1157.

Hood, D. A., Irrcher, I., Ljubicic, V., & Joseph, A. M. (2006). Coordination of metabolic plasticity in skeletal muscle. Journal of experimental biology, 209(12), 2265-2275.

Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., Wood, J. G., Zipkin, R. E., Chung, P., Kisielewski, A., Zhang, L. L., Scherer B., & Sinclair D. A. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425(6954), 191-196.

Ishihara, N., Nomura, M., Jofuku, A., Kato, H., Suzuki, S. O., Masuda, K., Otera, H., Nakanishi, Y., Nonaka, I., Goto, Y., Taguchi, N., Morinaga, H., Maeda, M., Takayanagi, R., Yokota, S., & Mihara, K. (2009). Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nature cell biology, 11(8), 958-966.

Kaeberlein, M., McDonagh, T., Heltweg, B., Hixon, J., Westman, E. A., Caldwell, S. D., Napper, A., Curtis, R., DiStefano, P. S., Fields, S., Bedalov, A., & Kennedy B. K. (2005). Substrate-specific activation of sirtuins by resveratrol. Journal of Biological Chemistry, 280(17), 17038-17045.

Kanatous, S. B., & Mammen, P. P. (2010). Regulation of myoglobin expression. Journal of Experimental Biology, 213(16), 2741-2747.

Kim, K., Lecordier, A., & Bowman, L. H. (1995). Both nuclear and mitochondrial cytochrome c oxidase mRNA levels increase dramatically during mouse postnatal development. Biochemical Journal, 306(2), 353-358.

Lin, J., Wu, H., Tarr, P. T., Zhang, C. Y., Wu, Z., Boss, O., Michael, L. F,, Puigserver, P., Isotani, E., Olson, E. N., Lowell, B. B., Bassel-Duby, R., & Spiegelman, B. M. (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature, 418(6899), 797-801

Lin, P. C., Kreutzer, U., & Jue, T. (2007). Anisotropy and temperature dependence of myoglobin translational diffusion in myocardium: implication for oxygen transport and cellular architecture. Biophysical journal, 92(7), 2608-2620.

Liu, Y., Shen, T., Randall, W. R., & Schneider, M. F. (2005). Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle. Journal of Muscle Research & Cell Motility, 26(1), 13-21.

Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American journal of clinical nutrition, 79(5), 727-747.

Masuda K, Takakura H, Furuichi Y, Iwase S and Jue T (2010) NIRS measurement of O(2) dynamics in contracting blood and buffer perfused hindlimb muscle. Advanced Experimental Medical Biology, 662, 323-8

Meeson, A. P., Radford, N., Shelton, J. M., Mammen, P. P., DiMaio, J. M., Hutcheson, K., Kong, Y., Elterman, J., Williams, R. S., & Garry, D. J. (2001) Adaptive mechanisms that preserve cardiac function in mice without myoglobin Circuklation Research, 88(7), 713-20

Middleton, E., Kandaswami, C., & Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological reviews, 52(4), 673-751.

Myers, J., Prakash, M., Froelicher, V., Do, D., Partington, S., & Atwood, J. E. (2002). Exercise capacity and mortality among men referred for exercise testing. New England Journal of Medicine, 346(11), 793-801.

Nandiyanto, A. B. D., Sofiani, D., Permatasari, N., Sucahya, T. N., Wiryani, A. S., Purnamasari, A., Rusli, A., & Prima, E. C. (2016). Photodecomposition Profile of Organic Material during the Partial Solar Eclipse of 9 March 2016 and Its Correlation with Organic Material Concentration and Photocatalyst Amount. Indonesian Journal of Science and Technology, 1(2), 132-155.

Ponganis, P. J., Kreutzer, U., Sailasuta, N., Knower, T., Hurd, R., & Jue, T. (2002). Detection of myoglobin desaturation in Mirounga angustirostris during apnea. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 282(1), R267-R272.

Hamidie, R. D. R., Yamada, T., Ishizawa, R., Saito, Y., & Masuda, K. (2015). Curcumin treatment enhances the effect of exercise on mitochondrial biogenesis in skeletal muscle by increasing cAMP levels. Metabolism, 64(10), 1334-1347.

Reichert, A. S., & Neupert, W. (2004). Mitochondriomics or what makes us breathe. Trends in genetics, 20(11), 555-562.

Roy, M., Reddy, P. H., Iijima, M., & Sesaki, H. (2015). Mitochondrial division and fusion in metabolism. Current opinion in cell biology, 33, 111-118.

Shibaguchi, T., Ishizawa, R., Tsuji, A., Yamazaki, Y., Matsui, K., & Masuda, K. (2017). Fermented Grain Beverage Supplementation Following Exercise Promotes Glycogen Supercompensation in Rodent Skeletal Muscle and Liver. Indonesian Journal of Science and Technology, 2(1), 1-7.

Shiota, T., Imai, K., Qiu, J., Hewitt, V. L., Tan, K., Shen, H. H., Sakiyama, N., Fukasawa, Y., Hayat, S., Kamiya, M., Elofsson, A., Tomii, K., Horton, P., Wiedemann, N., Pfanner, N., Lithgow, T., & Endo, T. (2015). Molecular architecture of the active mitochondrial protein gate. Science, 349(6255), 1544-1548.

Singh, S., Canseco, D. C., Manda, S. M., Shelton, J. M., Chirumamilla, R. R., Goetsch, S. C., Ye, Q., Gerard, R. D., Schneider, J. W., Richardson, J. A., Rothermel, B. A., & Mammen, P. P. (2014). Cytoglobin modulates myogenic progenitor cell viability and muscle regeneration. Proceedings of the National Academy of Sciences, 111(1), E129-E138.

Soriano, F. X., Liesa, M., Bach, D., Chan, D. C., Palacín, M., & Zorzano, A. (2006). Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator–activated receptor-γ coactivator-1α, estrogen-related receptor-α, and mitofusin 2. Diabetes, 55(6), 1783-1791.

Suwa, M., Nakano, H., Radak, Z., & Kumagai, S. (2008). Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor γ coactivator-1α protein expressions in rat skeletal muscle. Metabolism, 57(7), 986-998.

Takakura, H., Masuda, K., Hashimoto, T., Iwase, S., & Jue, T. (2010). Quantification of myoglobin deoxygenation and intracellular partial pressure of O2 during muscle contraction during haemoglobin‐free medium perfusion. Experimental physiology, 95(5), 630-640.

Truscott, K. N., Kovermann, P., Geissler, A., Merlin, A., Meijer, M., Driessen, A. J., Rassow, J., Pfanner, N., & Wagner, R. (2001). A presequence-and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nature Structural & Molecular Biology, 8(12), 1074-1082.

Westermann, B. (2010). Mitochondrial fusion and fission in cell life and death. Nature reviews Molecular cell biology, 11(12), 872-884.

Williams, R. S., Salmons, S., Newsholme, E. A., Kaufman, R. E., & Mellor, J. (1986). Regulation of nuclear and mitochondrial gene expression by contractile activity in skeletal muscle. Journal of Biological Chemistry, 261(1), 376-380.

Wittenberg, B. A., & Wittenberg, J. B. (1989). Transport of oxygen in muscle. Annual Review of Physiology, 51(1), 857-878.

Yamada, T., Furuichi, Y., Takakura, H., Hashimoto, T., Hanai, Y., Jue, T., & Masuda, K. (2013). Interaction between myoglobin and mitochondria in rat skeletal muscle. Journal of Applied Physiology, 114(4), 490-497.

Yamada, T., Takakura, H., Jue, T., Hashimoto, T., Ishizawa, R., Furuichi, Y., Kato, Y., Iwanaka, N., & Masuda, K. (2016) Myoglobin and the regulation of mitochondrial respiratory chain complex IV. The Journal of physiology, 594(2), 483-495.

Yang, H., Baur, J. A., Chen, A., Miller, C., & Sinclair, D. A. (2007). Design and synthesis of compounds that extend yeast replicative lifespan. Aging cell, 6(1), 35-43.

Zurlo, F., Larson, K., Bogardus, C., & Ravussin, E. (1990). Skeletal muscle metabolism is a major determinant of resting energy expenditure. Journal of Clinical Investigation, 86(5), 1423.



  • There are currently no refbacks.

Copyright (c) 2017 Indonesian Journal of Science and Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Science and Technology is published by UPI.
StatCounter - Free Web Tracker and Counter
View My Stats