EMBODIED ENERGY PADA DINDING BAMBU ANYAMAN DAN PLESTER

Aldissain Jurizat, Try Ramadhan

Abstract


Abstract: Buildings consume high energy and cause an increase in CO2 gas emissions to the environment. This energy consumption is known as embodied energy where energy is used in the production and maintenance processes of buildings. In buildings, the largest consumption of embodied energy is contained in the walls. Among the various materials and construction of building walls, the trend of the plaster bamboo wall has been significantly increased because it has several advantages for the environment. This research was conducted to measure the embodied energy contained in bamboo wall construction located in Kampung Buyut Cipageran, Cimahi City. This research method uses Inventory Carbon and Energy (ICE) data from the University of Bath and Indonesian National Standard as the basics data for the calculation. The analysis has been conducted by calculating the basics data and the design drawings. The result showed that the embodied energy in the bamboo walls had a value of 230.61 MJ/m2. This result is lower than the known standard for brick wall with 440 MJ/m2. The bamboo wall is proved to be more efficient in energy use than conventional wall with brick as the main construction.

Keywords: bamboo wall; embodied energy;

 

Abstrak: Bangunan mengkonsumsi energi yang cukup tinggi dan mengakibatkan peningkatan emisi gas CO2 ke lingkungan. Penggunaan energi ini diketahui sebagai embodied energy dimana energi digunakan dalam proses produksi dan perawatan bangunan. Dalam suatu bangunan, penggunaan embodied energy terbesar terletak pada dinding. Dari berbagai material dan konstruksi pembentuk dinding bangunan, dinding bambu plester menjadi tren terbaru karena memiliki beberapa keunggulan dalam keramahan terhadap lingkungan. Penelitian ini dilakukan untuk mengukur embodied energy yang terdapat pada komponen dinding bambu di salah satu bangunan Kampung Buyut Cipageran, Kota Cimahi. Metode pengukuran menggunakan data Inventory Carbon and Energy (ICE) dari University of Bath dan petunjuk analisis pekerjaan konstruksi dari SNI. Hasil analisis menunjukkan bahwa embodied energy pada dinding bambu plester memiliki nilai 230,61 MJ/m2. Jika dibandingkan dengan dinding bata plester konvensional yang memiliki standar 440 MJ/m2, dinding bambu plester lebih efisien dalam penggunaan energi dalam siklus hidupnya.

Kata Kunci: dinding bambu; embodied energy;.

Full Text:

PDF

References


Ampofo-Anti, N. (2010). Material selection and embodied energy 1. Green Building Handbook South Africa: The Essential Guide, Alive2green, 3, 1–10.

Anonym. (2014). Methodology to the CO2 Calculations: Embodied Energy of Single Material Type. Sustainable Geosystem in Civil Engineering Application.

Dixit, M. K, Fernandez-Solis, J. L., Lavy, S., & Culp, C. H. (2010). Protocol for Embodied Energy Measurement Parameters. Retrieved from http://immobilierdurable.eu/images/2128_uploads/___Dixit.pdf

Dixit, Manish K. (2017). Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters. Renewable and Sustainable Energy Reviews, 79, 390–413. https://doi.org/10.1016/J.RSER.2017.05.051

Dixit, Manish K. (2019). Life cycle recurrent embodied energy calculation of buildings: A review. Journal of Cleaner Production, 209, 731–754. https://doi.org/10.1016/j.jclepro.2018.10.230

Ferdelina, Hena S. (2016). Laporan Praktik Industri Proyek Kampung Buyut Cipageran. UPI: Laporan Praktik Industri.

Hammond, G. P., & Jones, C. I. (2008). Embodied energy and carbon in construction materials. Proceedings of the Institution of Civil Engineers - Energy, 161(2), 87–98. https://doi.org/10.1680/ener.2008.161.2.87

Hammond, Geoff, & Jones, C. (2008). Inventory of Carbon & Energy (ICE) Version 1.6a. United Kingdom. Retrieved from www.bath.ac.uk/mech‐eng/sert/embodied/

Hammond, Geoffrey, & Jones, C. (2011). A BSRIA guide: Embodied Carbon: The Inventory of Carbon and Energy (ICE). (F. Lowrie & P. Tse, Eds.). United Kingdom: BSRIA BG & University of Bath. Retrieved from www.bath.ac.uk/mech-eng/sert/embodied/

Hanifah, Y., Reztrie, N. D., Ramadhan, T., & Larasati, D. (2019). Evaluation of Material Selection on the Initial Embodied Energy Value of Low-Middle Apartment in Indonesia. In SBE_Tokyo (Ed.), IOP Conf. Series: Earth and Environmental Science (Vol. 294). Tokyo: IOP Publishing. https://doi.org/10.1088/1755-1315/294/1/012036

Hashemi, A., Cruickshank, H., & Cheshmehzangi, A. (2015). Environmental Impacts and Embodied Energy of Construction Methods and Materials in Low-Income Tropical Housing. Sustainability, 7(June), 7866–7883. https://doi.org/10.3390/su7067866

Huang, L., Liu, Y., Krigsvoll, G., & Johansen, F. (2017). Life cycle assessment and life cycle cost of university dormitories in the southeast China: Case study of the university town of Fuzhou. Journal of Cleaner Production, 1–9. https://doi.org/10.1016/j.jclepro.2017.06.021

Ibn-Mohammed, T., Greenough, R., Taylor, S., Ozawa-Meida, L., & Acquaye, A. (2013). Operational vs. embodied emissions in buildings - A review of current trends. Energy and Buildings, 66, 232–245. https://doi.org/10.1016/j.enbuild.2013.07.026

Kementerian Pekerjaan Umum dan Perumahan Rakyat. (2007). Peraturan Menteri Pekerjaan Umum Nomor: 45/PRT/M/2007 Tentang Pedoman Teknis Pembangunan Bangunan Gedung Negara.

Larasati, D., Wahyuni, Y. S., Suhendri, & Triyadi, S. (2017). Embodied Energy Calculation in Mitigating Environmental Impact of Low-Cost Housing Construction. In EDP Sciences (Ed.), MATEC Web of Conferences (Vol. 138). EDP Sciences. https://doi.org/10.1051/matecconf/201713801001

Marzuki, I. (2019). Analisis Penggunaan Bambu Plester Terhadap Penurunan Biaya. Jurnal Ilmiah Techno Entrepreneur Acta, 4(December), 117–123.

Nairobi (1991). Energy for Building − Improving Energy Efficiency in Construction and in the Production of Building Materials in Developing Countries. Journal United Nations Centre for Human Settlements (Habitat).

Pratiwi, Sri N. (2014). Kajian Embodied Energy Dinding Pada Berbagai Tipe Rumah Susun. ITB: Tesis.

Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592–1600. https://doi.org/10.1016/j.enbuild.2010.05.007

Sabaruddin, A., Karyono, T. H., & Tobing, R. (2011). Model Perhitungan Kandungan Emisi CO2 Pada Bangunan Gedung. CO2 Emission Greenhouse Gas Effect and Global Warming Building Energy.

Sentzas, K., Tsiamitros, D., Stephanedes, Y. J., & Cities, S. (2017). A hybrid life cycle analysis method for the environmental assessment of conventional building materials. In 6th International Conference “ENERGY in BUILDINGS 2017. Athens, Hellas: ASHRAE Hellenic Chapter.

Standar Nasional Indonesia. (2002). SNI 03-6897-2002 Tata cara perhitungan harga satuan pekerjaan pasangan dinding. (Badan Standardisasi Nasional, Ed.). Badan Standardisasi Nasional.

Standar Nasional Indonesia. (2008a). SNI 2837:2008 Tata cara perhitungan harga satuan pekerjaan plesteran untuk konstruksi bangunan gedung dan perumahan. (Badan Standardisasi Nasional, Ed.). Indonesia: Badan Standardisasi Nasional.

Standar Nasional Indonesia. (2008b). SNI 6897:2008 Tata cara perhitungan harga satuan pekerjaan dinding untuk konstruksi bangunan gedung dan perumahan. (Badan Standardisasi Nasional, Ed.). Badan Standardisasi Nasional.

Standar Nasional Indonesia. (2008c). SNI 7395:2008 Tata cara perhitungan harga satuan pekerjaan penutup lantai dan dinding untuk konstruksi bangunan gedung dan perumahan. (Badan Standardisasi Nasional, Ed.). Badan Standardisasi Nasional.

Surahman, U., Kubota, T., & Higashi, O. (2015). Life Cycle Assessment of Energy and CO2 Emissions for Residential Buildings in Jakarta and Bandung, Indonesia. Buildings, 5(4), 1131–1155. https://doi.org/10.3390/buildings5041131

Suriani, E. (2017). Bambu Sebagai Alternatif Penerapan Material Ekologis : Potensi dan Tantangannya. EMARA Indonesian Journal of Architecture, 3(1), 33–42.

Ting, S. K. (2006). Optimisation of Embodied Energy in Domestic Construction. RMIT University. https://doi.org/10.2749/222137804796302671

Treloar, G. J. (1998). A Comprehensive Embodied Energy Analysis Framework. Faculty of Science and Technology, Deakin University.

Utama, A., & Gheewala, S. H. (2009). Indonesian residential highrise buildings: A life cycle energy assessment. Energy and Buildings, 41(11), 1263–1268. https://doi.org/10.1016/j.enbuild.2009.07.025

Utama, N. A. (2006). Embodied Energy of Building Envelopes and its Influence on Cooling Load in Typical Indonesian MiddleClass Houses. In The 2nd Joint International Conference on “Sustainable Energy and Environment (SEE 2006) (pp. 1–5). Bangkok, Thailand.

Utama N. A, dkk., (2008): Life Cycle Energy of Single Landed Houses in Indonesia, Energy And Buildings. Journal Energy Buildings, 40, 1911-1916.

Wahyuni, Y. S., & Larasati, D. (2017). Identifikasi Nilai Embodied Energy sebagai Upaya Mitigasi Energi dalam perencanaan Bangunan. Jurnal Lingkungan Binaan Indonesia, 6(50), 9–15.

Waqas, A., & Ud Din, Z. (2013). Phase change material (PCM) storage for free cooling of buildings - A review. Renewable and Sustainable Energy Reviews. Elsevier. https://doi.org/10.1016/j.rser.2012.10.034

Zhang, X., & Wang, F. (2016). Assessment of embodied carbon emissions for building construction in China: Comparative case studies using alternative methods. Energy and Buildings, 130, 330–340. https://doi.org/10.1016/j.enbuild.2016.08.080




DOI: https://doi.org/10.17509/jaz.v3i2.25061

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Aldissain Jurizat, Try Ramadhan

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.