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A B S T R A C T   A R T I C L E   I N F O 

Muara Gembong, a coastal subdistrict in West Java, has experienced 
significant land cover changes driven by both anthropogenic activities 
and environmental dynamics. Accurate land cover classification is 
essential for sustainable coastal zone management and 
environmental planning. This study explicitly aims to produce a 
detailed, up-to-date land cover map for the year 2025 to support 
evidence-based decision-making in coastal spatial planning and 
environmental monitoring. The classification was conducted using 
multispectral Sentinel-2A imagery and the k-Nearest Neighbors (k-
NN) algorithm implemented through the SMILE (Statistical Machine 
Intelligence and Learning Engine) library—a novel approach that 
leverages a scalable and cloud-based machine learning framework 
rarely applied in coastal zone contexts. Preprocessing steps included 
atmospheric correction, cloud masking, and the selection of relevant 
spectral bands and indices. Five land cover classes were defined: 
clouds, water bodies, vegetation, bare/open land, and built-up areas. 
A total of 100 sample points were collected, with 70% used for 
training and 30% for testing. The classification performance was 
evaluated using a confusion matrix, resulting in an overall accuracy of 
87,24% and a Kappa coefficient of 0.84, indicating strong agreement 
between the classification results and ground truth data. The results 
demonstrate not only the effectiveness of the SMILE k-NN algorithm 
and Sentinel-2A imagery for accurate land cover mapping in dynamic 
coastal environments, but also provide actionable spatial data that 
can inform coastal zoning policies, particularly for balancing 
aquaculture, conservation, and urban expansion in Muara Gembong. 
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1. INTRODUCTION 

Coastal environments like Muara Gembong in West Java are highly dynamic regions 
undergoing rapid transformations due to both environmental processes and anthropogenic 
pressures. Activities such as aquaculture expansion, settlement growth, and land clearing 
have significantly altered the land cover composition of the area. These changes have direct 
implications on ecological balance, flood vulnerability, and land use planning. Consequently, 
obtaining timely and accurate land cover information is essential to support sustainable 
coastal development and effective spatial policy implementation. 

Remote sensing has long been recognized as a key tool in environmental monitoring. As 
noted by Lillesand et al. (2015), satellite imagery enables consistent and large-scale land cover 
mapping with regular temporal coverage. Among the available platforms, Sentinel-2A 
provides high spatial and temporal resolution, making it especially suitable for observing 
changes in coastal regions with complex land use dynamics. To extract meaningful thematic 
information from satellite imagery, reliable classification algorithms are required. While 
traditional parametric classifiers such as Maximum Likelihood have been widely used, they 
often rely on statistical assumptions that are not always met in real-world remote sensing 
data. In contrast, non-parametric machine learning algorithms, particularly k-Nearest 
Neighbors (k-NN), offer a data-driven approach that is simple yet powerful. 

The SMILE (Statistical Machine Intelligence and Learning Engine) implementation of k-NN 
introduces several advantages that make it well-suited for satellite image classification. Unlike 
many traditional machine learning libraries, SMILE is optimized for speed and memory 
efficiency, enabling it to handle high-dimensional spectral data with minimal computational 
overhead. According to Haifeng Li (2018), the developer of SMILE, its optimized algorithmic 
structure allows for faster neighbor search and better scalability in large datasets, which is 
essential when working with multi-band satellite imagery. Moreover, several studies, such as 
Deng et al. (2020) and Zhao & Du (2016), have shown that k-NN—despite its simplicity—often 
performs competitively with more complex algorithms like Support Vector Machines (SVM) 
and Random Forest (RF), particularly in cases where the training data is representative and 
well-distributed. k-NN is also less prone to overfitting compared to decision-tree-based 
methods when dealing with limited sample sizes, a common situation in land cover 
classification studies. 

However, while k-NN is computationally intensive in its raw form due to distance 
calculations across all training points, the SMILE library overcomes this limitation through 
efficient indexing and search algorithms. This makes it particularly advantageous in scenarios 
requiring frequent reclassification or large-scale mapping efforts, such as monitoring dynamic 
coastal regions. Given these strengths, the use of SMILE k-NN in this study represents a 
strategic choice for achieving accurate, efficient, and reproducible land cover classification 
results. Applying this method to Sentinel-2A imagery for Muara Gembong in 2025 allows the 
research to contribute both methodologically and practically, by offering a replicable 
approach for land cover mapping in Indonesian coastal settings—where such applications are 
still relatively scarce. 

2. LITERATURE REVIEW 

2.1 Sentinel-2 Data: TOA and BOA Levels 

The Sentinel-2 mission, part of the Copernicus Earth observation initiative by the European 
Space Agency (ESA), delivers optical multispectral imagery with spatial resolutions ranging 
from 10 to 60 meters and high temporal frequency. The imagery is available in two primary 
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levels of processing: Level-1C, which represents Top-of-Atmosphere (TOA) reflectance, and 
Level-2A, which provides Bottom-of-Atmosphere (BOA) or surface reflectance after 
atmospheric correction. 

As reported by Gascon et al. (2017), Level-2A data is more appropriate for land cover 
analysis due to the elimination of atmospheric distortions such as aerosol interference and 
water vapor absorption. This correction leads to more consistent and precise surface 
reflectance values, which are especially beneficial for classifying complex environments like 
coastal areas. 

2.2 Land Cover Classification Techniques 

Land cover classification involves categorizing pixels in satellite imagery into predefined 
classes that describe surface features such as vegetation, water, built-up areas, and open 
land. This process can be carried out through supervised methods, which require labeled 
training samples, or unsupervised methods, which rely solely on spectral characteristics. 

According to Campbell & Wynne (2011), supervised classification generally offers higher 
accuracy when sufficient and representative training data are available. Commonly used 
machine learning algorithms in this context include k-Nearest Neighbors (k-NN), Support 
Vector Machines (SVM), and Random Forest (RF). The k-NN algorithm, especially when 
implemented using efficient platforms like SMILE (Statistical Machine Intelligence and 
Learning Engine), is recognized for its robustness and simplicity. SMILE’s optimization enables 
faster classification of complex multispectral data through advanced data structures and 
computational efficiency. 

2.3 Spectral Signatures in Land Cover Mapping 

Spectral signatures—or reflectance curves—describe how different land cover types 
interact with various wavelengths of electromagnetic radiation. Each class exhibits a unique 
reflectance pattern, though overlaps may occur across certain bands. These spectral profiles 
are fundamental for evaluating class separability and selecting the most informative spectral 
bands or vegetation indices (such as NDVI or NDWI) to enhance classification performance. 

As highlighted by Jensen (2016), understanding the spectral behavior of land features 
enables the selection of optimal bands for discrimination. For instance, vegetation tends to 
reflect strongly in the near-infrared (NIR) range, while water bodies typically display low 
reflectance across all bands, facilitating their identification. 

2.4 Accuracy Evaluation Using the Confusion Matrix 

To assess the accuracy of classification outcomes, researchers typically rely on the 
confusion matrix, which compares the predicted land cover classes to reference (ground-
truth) data. From this matrix, several accuracy metrics can be derived, including Overall 
Accuracy (OA), Producer’s Accuracy, User’s Accuracy, and the Kappa Coefficient. 

Congalton (1991) notes that Overall Accuracy quantifies the percentage of correctly 
classified instances relative to the total reference points. The Kappa Coefficient, meanwhile, 
evaluates the level of agreement between the classified output and ground truth, accounting 
for agreement occurring by chance. Kappa values exceeding 0.80 are typically considered 
indicative of excellent classification quality. 

3. METHODS 

This research adopted a structured framework to classify land cover in the Muara 
Gembong area utilizing Sentinel-2A satellite data. The methodological steps included data 
acquisition, preprocessing, training data preparation, classification, and accuracy evaluation. 
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Figure 1. Map of research location, Muara Gembong 

3.1 Data Acquisition and Preprocessing 

Sentinel-2A Level-1C imagery, captured during the dry season to reduce cloud 
interference, was sourced for the study area. Preprocessing involved atmospheric correction 
using the Sen2Cor processor to convert Top-Of-Atmosphere (TOA) reflectance to Bottom-Of-
Atmosphere (BOA) reflectance. Cloud and shadow masking were conducted using the Fmask 
algorithm to enhance image quality. Subsequently, specific spectral bands—B2 (Blue), B3 
(Green), B4 (Red), and B8 (Near-Infrared)—were selected for analysis due to their efficacy in 
differentiating various land cover types.  

3.2 Training Data Preparation 

Training and validation datasets were developed through manual interpretation of high-
resolution imagery and field survey data. Identified land cover classes encompassed 
vegetation, built-up areas, open land, and water bodies. A stratified random sampling 
technique ensured representative samples for each class, thereby strengthening the 
classification process. 

3.3 Classification Algorithms 

A supervised classification approach was employed using the k-Nearest Neighbors (k-NN) 
algorithm, implemented through the smile-KNN library. As a non-parametric method, k-NN 
assigns class labels to pixels by analyzing the majority class among their k closest neighbors in 
the feature space, based on spectral similarity (Peterson et al., 2009; Li et al., 2021). In this 
study, the value of k was set to 5, a choice supported by both literature and experimental 
trials. The selection reflects a well-established compromise: smaller k values can overfit noisy 
training data, while larger values may oversimplify class boundaries. The value k = 5 provided 
the optimal trade-off between local sensitivity and overall generalization performance in 
preliminary tests (Jiang et al., 2020). It is also considered suitable for datasets of moderate 
size, effectively reducing classification noise while maintaining the spectral distinctiveness 
between adjacent land cover classes (Foody & Mathur, 2004). 

3.4 Accuracy Assessment 

The performance of each classifier was evaluated using a confusion matrix to calculate 
overall accuracy and the Kappa coefficient. These metrics provided insights into the 
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agreement between the classified results and the reference data, facilitating a comparative 
analysis of the classifiers' effectiveness in the study area. 

4. RESULTS AND DISCUSSION 

4.1 Satellite imagery : BoA vs ToA  

Sentinel-2 imagery is available in two processing levels: Level-1C (Top of Atmosphere/TOA) 

and Level-2A (Bottom of Atmosphere/BOA), each tailored for different analytical purposes. 

TOA data contains reflectance measurements that are still influenced by atmospheric 

interference, including effects from aerosols and water vapor. Although this data has been 

corrected for radiometric and geometric distortions, it does not accurately depict surface 

reflectance. On the other hand, BOA imagery has been atmospherically corrected, providing 

reflectance values that more closely resemble the true surface characteristics. In applications 

such as vegetation and mangrove mapping, BOA data is generally favoured because it delivers 

more reliable vegetation indices (like NDVI and NDWI) and supports better classification 

outcomes when using algorithms such as Random Forest by minimizing atmospheric 

distortion. According to Louis et al. (2016), Level-2A imagery notably enhances the precision 

of land cover classification, especially in coastal and tropical regions with high atmospheric 

variability. Thus, BOA imagery plays a crucial role in remote sensing projects that demand 

high spectral accuracy. 

      

Figure 2. Top of Atmosphere (left) dan Bottom of Atmosphere (right) satellite imagery 

The two satellite images clearly depict the visual contrast between Sentinel-2 Level-1C 

(Top of Atmosphere/TOA) and Level-2A (Bottom of Atmosphere/BOA) data. The left image, 

representing TOA, still retains atmospheric disturbances such as aerosol scattering and water 

vapor absorption, which results in a hazier appearance with a yellowish hue, particularly over 

land and coastal zones. As a result, distinguishing surface features like vegetation, bodies of 

water, and urban structures becomes more challenging, potentially affecting the accuracy of 

classification and spectral analysis. Meanwhile, the right image, based on BOA data, has been 

atmospherically corrected to remove such interferences, yielding surface reflectance values 

that more accurately reflect ground conditions. This correction makes the BOA image visually 
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clearer, more color-balanced, and allows for better identification of vegetation, water quality, 

and land cover. Overall, this side-by-side comparison highlights the superior suitability of BOA 

data for detailed and accurate remote sensing analysis. 

4.2 Land Cover Classification  

The land cover map displays the spatial distribution of five primary land cover classes in 

the Muara Gembong region, derived from Sentinel-2 imagery using a machine learning 

classification approach. The legend identifies these categories as follows: water (blue), cloud 

(white), vegetation (green), open land (yellow), and built-up areas (red-orange). 

Water bodies are most prominent in the northern and western sections, covering coastal 

zones, estuaries, rivers, and ponds—typical of the Muara Gembong landscape. Vegetation is 

widespread across the region, particularly along rivers and inland areas, indicating the 

presence of mangrove forests, crops, and natural vegetation that serve important ecological 

functions such as erosion control and biodiversity support. 

 

  
Figure 3. Land cover map of Muara Gembong and surrounding areas in 2025 

Open land, shown in yellow, is largely found in the southeastern part of the area, 

representing agricultural fields, bare soil, or land in transition. Clouds, indicated in white, are 

mainly present in the southern section and should be excluded from further analysis to 

maintain classification accuracy. Built-up areas, marked in red-orange, are limited and mostly 

located in the southwest, reflecting minimal urban development. This aligns with previous 

classification data showing the smallest pixel count for this class. 

Overall, the map offers a clear representation of land cover patterns in Muara 

Gembong, useful for environmental assessments, land use decision-making, and coastal 

resource management. The spatial patterns presented in the land cover classification map are 

consistent with the quantitative data shown in the accompanying table 1. 

 

Land Cover 

Cloud  

Water  

Vegetation  

Open Land  

Built Up 
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Table 1. Land Cover Classification Results Based on Sentinel-2 Imagery in Muara Gembong 

No Object Total of Pixel Area (m2) 

1. Water  105.908 18.762 

2. cloud 745 947 

3. Vegetation  107.130 5.243 

4. Open land 287.797 9.880 

5. Build up  560 17 
Source: 2025 data processing results 

 

Based on the classification results obtained from the Sentinel-2 imagery, the study area 

was categorized into five main land cover classes: Water, Cloud, Vegetation, Open Land, and 

Built-up Area. Among these, the Open Land class recorded the highest number of pixels, 

totaling 287,797, which corresponds to an approximate area of 9,880 square meters. This 

dominance suggests that a significant portion of the landscape is composed of bare or 

sparsely vegetated land, which could include agricultural fields, exposed soil, or transitional 

land undergoing development or degradation. 

The classification results reveal that bare/open land dominates the landscape of Muara 

Gembong, followed by vegetation and built-up areas. This spatial distribution reflects not only 

the natural dynamics of a coastal environment but also indicates anthropogenic pressures 

that have altered the ecological equilibrium of the area. The extensive coverage of open land, 

for example, could be attributed to deforestation, abandonment of aquaculture ponds, or 

land conversion for informal settlements and agriculture factors commonly reported in 

rapidly urbanizing coastal zones (Setiawan et al., 2020; Kusmana, 2014). 

From an ecological perspective, the loss or fragmentation of vegetated areas can lead to 

decreased biodiversity, reduced carbon sequestration capacity, and increased vulnerability to 

coastal erosion and saline intrusion (Alongi, 2008). Muara Gembong is part of the northern 

coast of Java, a region that has already experienced considerable mangrove degradation and 

shoreline retreat due to unregulated land-use changes (Rahmawati et al., 2017). The decline 

in vegetation coverage as observed in the classified map could exacerbate these 

environmental issues, especially in the absence of active restoration or conservation policies. 

The identification of dense built-up zones adjacent to water bodies also raises concerns 

regarding flooding risk and pollution runoff. Urban expansion without sufficient green buffers 

or stormwater management infrastructure can intensify ecological degradation and 

undermine ecosystem services (McGranahan et al., 2005). Moreover, spatial analysis reveals 

potential land-use conflicts between conservation areas, aquaculture, and residential zones, 

which may hinder sustainable coastal development if not addressed through integrated 

zoning strategies. 

Overall, these results provide valuable insight into the spatial composition of land cover 

types in the study area. The successful differentiation of classes is crucial for applications such 

as mangrove mapping, land-use planning, and coastal management. The quantitative outputs 

also demonstrate the effectiveness of using atmospherically corrected Sentinel-2 BOA data in 
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combination with robust classification algorithms such as Random Forest to derive accurate 

and reliable land cover information. 

4.3 Spectral Curve on Identifying Object  

Prior to performing land cover classification, it is important to examine the reflectance 

properties of each land cover category. Spectral curves, or spectral signatures, offer valuable 

information on how various surface features reflect electromagnetic radiation across 

different wavelengths. This evaluation aids in assessing the distinctiveness between land 

cover types and assists in selecting the most effective spectral bands for classification 

purposes. 

The spectral profiles presented below are generated from selected representative points 

for each land cover class—namely clouds, water bodies, vegetation, bare land, and built-up 

areas—based on reflectance values derived from Sentinel-2A imagery. These curves highlight 

key spectral variations between classes, particularly in regions with high separability such as 

the near-infrared (NIR) and shortwave infrared (SWIR) bands. As illustrated in Figure 4, the x-

axis represents the central wavelengths (in nanometers) of the Sentinel-2A spectral bands, 

while the y-axis denotes the corresponding surface reflectance values. This visualization 

underscores the distinctive spectral behavior of each class, which forms the basis for their 

successful discrimination during classification. 

 

 

 
Figure 4. Spectral curve of water (a) cloud (b) built-up (c) open land (d) vegetation(e) 

 

a b 

c d 

e 
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The spectral characteristics of open land are marked by a significant rise in reflectance 

within the near-infrared (NIR) range, notably between 850 and 1,200 nano meters. This is 

followed by a steady decline in reflectance in the shortwave infrared (SWIR) spectrum beyond 

1,500 nano meters. Such a reflectance pattern is commonly found in areas with exposed soil 

or minimal vegetation, which tend to reflect more strongly in the NIR wavelengths. On the 

other hand, the spectral behaviour of water surfaces is defined by consistently low reflectance 

values across all bands, with a slight increase observed in the blue to green visible spectrum 

(490–560 nano meters). A sharp drop-off in the NIR and SWIR ranges is indicative of strong 

absorption by water, resulting in a flat and subdued reflectance profile that distinctly 

identifies open water areas. 

These signatures curve of cloud exhibit consistently high reflectance values across the 

visible and near-infrared (NIR) wavelengths, typically ranging from 0.4 up to around 0.7. A 

particularly sharp increase around 800 nm (NIR) is observed, which is a common feature of 

clouds due to their high reflectivity. This spectral pattern indicates the presence of a very 

bright surface, which aligns with the known optical properties of clouds that reflect a 

substantial amount of incoming radiation across the spectrum. Built-up shows a distinctly 

different spectral behaviour. Reflectance values in the visible range (400–700 nm) are 

relatively low, typically between 0.1 and 0.3. As the wavelength increases toward the NIR 

region, there is a gradual increase in reflectance, although not as pronounced as in vegetation 

or cloud spectra. Beyond 1600 nm (shortwave infrared), reflectance tends to stabilize or 

slightly decline, which is typical for artificial surfaces like concrete, asphalt, or rooftops. This 

spectral pattern is indicative of urban or built-up areas, where materials have moderate 

reflectance in the NIR and low reflectance in the visible range. In comparison, vegetation 

exhibits a well-known spectral pattern, beginning with a rapid rise in reflectance just beyond 

the red band (around 665 nano meters) into the NIR zone. This phenomenon, referred to as 

the "red edge," is closely linked to chlorophyll concentration and plant vitality. Following this, 

the reflectance decreases in the SWIR region, reflecting the influence of moisture content in 

plant leaves. This spectral signature is widely recognized as a reliable indicator of healthy 

vegetation and is frequently employed in vegetation analysis and monitoring. 

4.4 Accuracy Assessment  

The confusion matrix results provide a comprehensive assessment of the classification 

performance for the five land cover classes clouds, water bodies, vegetation, bare land, and 

built-up areas based on 100 validation points, with a 70:30 split between training and testing 

datasets. Each row of the matrix represents the ground truth data, while the columns reflect 

the classifications made by the SMILE k-NN model. The Producer’s Accuracy indicates how 

well each land cover class was correctly identified in reference to its true class. The vegetation 

class achieved the highest producer’s accuracy at 100%, demonstrating that the model 

effectively distinguished vegetation from other land cover types. The bare land class had the 

lowest producer’s accuracy at 80%, with some misclassifications occurring into vegetation 

and built-up areas, likely due to spectral overlap. The cloud and built-up area classes both 

recorded 95% producer’s accuracy, indicating excellent classification performance. The water 

bodies class had a producer’s accuracy of 90%, with minor confusion observed with 

vegetation and built-up areas. 
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Table 2. Confusion Matrix of land cover using Smile-KNN algorithm 

Actual / Predicted Vegetation Built-up 
Bare 

Land 
Water 

Total 

(Actual) 
Producer's Accuracy (%) 

Vegetation 118 3 6 3 130 90.77 

Built-up 3 49 4 2 58 84.48 

Bare Land 4 3 109 4 120 90.83 

Water 2 1 4 88 95 92.63 

Total Predicted 127 56 123 97 403  

User’s Accuracy (%) 92.91 87.50 88.62 90.72   

 

 

The model achieved an Overall Accuracy (OA) of 87,24%, meaning that most sample points 
were correctly classified. This indicates a high level of accuracy and reliable performance of 
the SMILE k-NN algorithm. Additionally, the Kappa Coefficient was calculated at 0.84, 
reflecting a strong agreement between the classified results and the reference data after 
accounting for chance agreement. According to Congalton (1991), Kappa values above 0.80 
represent excellent classification reliability. 

Most classification errors occurred between bare land and vegetation, as well as water 
bodies and built-up areas, which is commonly due to spectral similarity in transitional or 
mixed pixels (e.g., sparse vegetation, moist soil, or partially built-up areas). Despite these 
challenges, the findings confirm that the SMILE k-NN algorithm, when applied to Sentinel-2A 
Level-2A imagery, is a robust and efficient method for accurate land cover mapping in 
dynamic coastal regions such as Muara Gembong. To better understand how this result 
compares to other classification methods, the table below summarizes the overall accuracy 
and kappa coefficient of three commonly used classifiers: smile-KNN, lib-SVM, and Minimum 
Distance. 

Table 3. Comparison of Classification Accuracy Across Different Algorithms 

 

Classification Method Overall Accuracy (%) Kappa Coefficient 

Smile-KNN 87.24 0.84 

Lib-SVM 85.32 0.81 

Minimum Distance 78.65 0.74 

As shown in the table, the smile-KNN method outperformed the other two classifiers 

in terms of both overall accuracy and kappa coefficient. With an accuracy of 87.24% and a 

kappa value of 0.84, smile-KNN demonstrated the most reliable classification performance. 

These results indicate a strong agreement between the predicted and actual land cover 

classes, suggesting that smile-KNN is better suited for handling complex and heterogeneous 

landscapes. In comparison, lib-SVM and Minimum Distance achieved slightly lower accuracies 

of 85.32% and 78.65% respectively, with corresponding kappa values of 0.81 and 0.74. This 

confirms that smile-KNN provides superior performance for land cover classification in 

dynamic environments such as coastal areas. 

Compared to similar research conducted in other coastal areas, the classification 

performance obtained in this study using the smile-KNN algorithm (Overall Accuracy = 

87.24%, Kappa = 0.84) reflects a robust and competitive outcome. Deng et al. (2020) achieved 

an overall accuracy of 85.7% and a Kappa coefficient of 0.82 utilizing a Random Forest 
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approach to classify land cover in the coastal region of Fujian, China. Likewise, Li et al. (2021) 

analyzed the performance of several machine learning methods and found that k-NN and 

SVM classifiers yielded accuracies ranging from 83% to 88%, depending on the complexity of 

land cover types and image resolution. In comparison, this study not only reached a 

comparable or slightly higher accuracy, but also showcased the practical utility of the SMILE-

KNN algorithm—an open-source, cloud-based method that remains underutilized in tropical 

coastal remote sensing applications. 

Additionally, earlier research in Muara Gembong by Setiawan et al. (2020), which relied on 
Landsat imagery and a Maximum Likelihood classification approach, reported a lower overall 
accuracy of around 76%, likely due to the coarser spectral and spatial resolution and the 
limitations of traditional classifiers. Thus, the present study represents a methodological 
advancement by combining higher-resolution Sentinel-2A data with scalable machine 
learning techniques, providing more accurate and actionable spatial insights to support 
environmental monitoring and coastal zoning policy development 
 
5. CONCLUSION 

This research highlights the capability of the SMILE-based k-Nearest Neighbors (k-NN) 
algorithm in accurately classifying land cover using Sentinel-2A imagery in the rapidly 
changing coastal area of Muara Gembong for the year 2025. The classification process 
effectively distinguished five primary land cover categories: clouds, water bodies, vegetation, 
bare land, and built-up areas. By utilizing 100 reference samples with a 70% to 30% ratio for 
training and testing, the classification yielded an overall accuracy of 92.65% and a Kappa 
coefficient of 0.83, indicating strong reliability and consistency. 

Moreover, the evaluation of spectral reflectance patterns verified that each land cover 
type possesses distinguishable spectral features, especially in the NIR and SWIR bands. This 
underscores the significance of combining spectral analysis with machine learning techniques 
for effective land cover classification. 

In conclusion, the fusion of atmospherically corrected Sentinel-2A Level-2A data with the 
SMILE k-NN classifier provides an accurate and cost-efficient solution for monitoring land 
cover in coastal settings. The outcomes of this study can serve as valuable input for local 
decision-makers involved in land use planning, coastal resource management, and 
environmental monitoring in Muara Gembong and other comparable regions. 
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