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AABBSSTTRRAAKK  

 

Dalam artikel ini, kita mempelajari difusi panas dalam media berdimensi dua 

yang memuat crack. Ada dua jenis crack yang kita pandang, crack lentur dan 

crack keras. Kedua jenis crack itu dibedakan oleh syarat batas dari persamaan 

difusi. Dengan menggunakan metode dari Muijres, kita dapat menentukan 

temperatur di luar crack yang dinyatakan dalam fungsi Green dari persamaan 

difusi dan temperatur incident pada crack.   

Key words:  crack, diffusion, incident field, scattered field  

 

 

IINNTTRROODDUUCCTTIIOONN  

    The problem with small scale heterogeneities is, that they cannot be observed 

individually using seismic waves, but still can have a significant effect on the amplitude 

and phase of the transmitted wave field. Due to the small scale of the cracks, the medium 

almost behaves as a homogeneous one. Most methods concerning wave propagation in 

cracked media are based on this concept on an effective medium. 

     Muijres (1998) proposed a method for solving the boundary-value problem 

corresponding to waves propagating through a two-dimensional medium containing a large 

number of small-scale inhomogeneities. The method was applied to three types of 

scattering objects in  a homogeneous and unbounded embedding: (1) compliant cracks 

accounted for by the Dirichlet boundary condition, (2) rigid cracks accounted for by the 

Neumann boundary  condition and (3) penetrable heterogeneity characterized by a 

compressibility that differs from the compressibility in the embedding. 

    Van Baren (1998) constructed a finite difference method, capable of solving the 

scattering problem in case of a large number of small-scale cracks embedded in a 

heterogeneous medium. This method accounts for the presence of the cracks by introducing 
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secondary point source instead of imposing explicit boundary conditions. The reduction in 

computing-time compared to the method of Muijres is significant. 

     In this paper we study the diffusion of heat through  a two-dimensional medium 

containing a crack. Our method is similar to the method  described by Muijres (1998) in 

case of acoustic  waves. We concentrate on a compliant crack and a rigid crack. Starting 

from an integral representation for the temperature, an integral equation is obtained for the 

unknown field quantity at the crack. By choosing adequate expansion function, we 

determine the unknown expansion coefficient. 

 

 

FFOORRMMUULLAATTIIOONN  PPRROOBBLLEEMM    

     We consider two-dimensional scattering from a crack embedded in a homogeneous 

medium, for  heat diffusion. The thermal diffusivity of the medium,  , is a constant. The 

crack is denoted as a line segment  characterized by its position x0 = (x0 ,z0), its half-width 

a and the angle  with horizontal. The z-coordinate indicates depth, whereas the x-

coordinate refers to the horizontal position. The  unity vector normal to the crack is given 

by n = (cos ,sin ). 

      The total temperature field u is written as a superposition of the incident field uinc and 

the scattered field usc:  

 u (x ,  ) = uinc (x ,  ) +  usc (x ,  ) ,  (1) 

where x = (x, z)  is a Cartesian position vector and    is the angular frequency.  Our 

formulation is in the temporal frequency domain, but for brevity we omit the explicit -

dependence in the remainder. 

    In the region outside the cracks, the temperature  satisfies the diffusion equation 

 2 u ( x ) + 


i u ( x ) = -s ( x ),  (2) 

where  is the thermal diffusivity associated with the speed propagation of heat in the 

medium during changes of the temperature with time, and s(x) represents the source that 

generates the incident field. In case of a unit point source located in x = x’, that is ,  

(s x ()  x - x )'  the solution of Eq. (2) corresponding to outgoing temperature is Green’s 

function uG, for the background medium. This reads 

 (Gu x , x )'  = )(
4

0
)1(

0 rkH
i

 (3) 

where  i  is the imaginary unit, )1(
0H

 is the zeroth-order Hankel function of the first kind, k0 

is the diffusion  number  (k0 = i ) and r is the distance between x and x’ 
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 (r x , x )'   |x – x |'  (4) 

  = 22 )'()'( yyxx    (5) 

The following integral representation can be derived for the temperature outside the crack: 

 (u x () incu x d
x

'

) x ('G x,x ()'  x )' ,      x   (6) 

where G follow from the two-dimensional Green’s function (3), and  depend on the 

particular scattering problem considered. In order to determine the unknown quantity  at 

the crack a Fredholm integral equation has to be derived from (6) by letting the point 

observation approach the crack and using the boundary condition: 

 (lim
inc

xox

q


x d
xoxx

 '

lim) x ('K x,x ()'  x )'   (7) 

The precise form of the Kernel K  (determined by Green’s function uG ) and the function 

qinc (determined by the incident field uinc ) depends on the type of the cracks; expression for 

the compliant crack and the rigid crack are given in  following sections. 

 

 

DDIISSCCRREETTIIZZAATTIIOONN  

    In order to evaluate the integrals in Eq. (6) and (7),  is expanded in terms of  an 

appropriately chosen sequence of functions. Following the work of Muijres (1998) but for 

arbitrary   we split up  in  a frequency-dependent and a spatial part, 

 ( x, ()()  b x ) ,        x    (8) 

with  a suitable expansion function chosen to be independent of frequency, the frequency 

dependence resides in b. 

    After multiplying Eq. (7) with a conveniently chosen weight function (w x ) , and 

integrating the result over the crack we finally arrive at 

 bKq inc 11   (9) 

with 

 dq
x

inc



x (w x )  (incq x )    (9a) 

and 
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 dK
x



11 x w( x d
x

'

) x ('K ax ()'  x )'    (9b) 

Esq. (9) has to be solved for the coefficient b . Subsequently, the temperature outside the 

crack can be computed by substituting Eq. (8) in Eq. (6): 

 (u x () incu x db
x

'

) x ('G x , x ()'  x )' ,       x    (10) 

We apply our framework to two type of cracks differing in boundary conditions: vanishing 

temperature at a compliant crack ( Dirichlet boundary condition ) and vanishing component 

of the temperature gradient at a rigid crack (Neumann boundary condition). The two cases 

are discussed below in more detail. 

 

 

CCOOMMPPLLIIAANNTT  CCRRAACCKK  

     To simplify the following equations, we introduce a new coordinate system ),(   such 

that the position of the crack can be simplified to be )0,0(  in new coordinate system. 

The compliant crack is characterized by the Dirichlet boundary condition: 

 0)0,( u ,                a||   (11) 

The function  represents the jump in normal derivative of the temperature across the crack: 

 ),(lim),(lim)(
00














uu
,         a||   (12) 

and G is Green’ function (3) for the embedding medium 

 )',';,()',';,(  GuG   (13) 

To obtain a Fredholm equation of the first kind for the crack, we let the point of observation 

approach the crack and use boundary condition (11). We get 

 ),'()0',';0,(')0,( 


G
a

a

inc udu       a||   (14) 

The kernel of this integral equation is Green’s function (3): 

 )',';,()',';,(  GuK ,  (15) 

furthermore, the function 
incq  is the incident field: 

 ),(),(  incinc uq   (16) 
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For both expansion and weight function we make the following choice: 

 ,}{)( 2/122  a            2/122 }{)(  aw .  (17)                    

 This choice is based on a solution for a small crack  (see  Muijres (1998)). To calculate 
incq  in Eq. (9a),  we expand 

incu  in the zeroth-order Taylor series and obtain 

 )0,0(incinc uq  .  (18) 

To calculate 
11K  we approximate Green function )( 0

)1(
0 rkH  by )log( 0rk  (because the 

argument approach zero). Integrating Eq. (9b)  we obtain 

 
4

2

11

i
K


   (19) 

For the temperature outside the crack  we derive from  Eq. (10) the following expression: 

 (u x () incu x (() 0
)1(

0 rkH x,xo )() q   (20) 

 with ),()( 00 yxuq inc .        

  

 

RRIIGGIIDD  CCRRAACCKK  

    This is characterized by the Neumann boundary condition: 

 ,0),(lim
0









u
            a||   (21) 

Now the function  represents the jump in the temperature across the crack: 

 ),,(lim),(lim)(
00




uu          a|| ,  (22) 

and G is the partial derivative with respect to '  of Green’s function (3): 

 ).',';,(
'

)',';,( 





Gu
G   (23) 

To obtain a Fredholm equation of the first kind we first take the partial derivative of (6) 

with respect to  , we then let the point of observation subsequently approach the crack, 

while using the boundary condition (21): 

 ),0',';,(
'

lim)0,(
2

0













Ga

a

inc uu     a||   (24) 
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When we compare this equation with Eq. (7) we see that K is the kernel 

 )',';,(
'

)',';,(
2







Gu
K   (25) 

and that incq  is the function 

 ).,(lim),(
0









inc
inc u
q   (26) 

For both expansion and weight function we make the following choice: 

 ,2)( 22  a            222)(  aw .  (27) 

Again this choice is based on a solution for a small crack  (see also Muijres (1998)). To 

calculate 
incq  in Eq. (9a), we expand  /incu  in a first-order Taylor series and obtain 

 ).0,0(
2

2







inc
inc ua
q   (28) 

To calculate 
11K  we again approximate Green function )( 0

)1(
0 rkH  by )log( 0rk . Integrating 

Eq. (9b)  we obtain 

 
2

2

11

a
K


   (29) 

For the temperature outside the crack  we derive from  Eq. (10) the following expression: 

 (u x () incu x ((
4),(

)(
) 0

)1(
10

0

02 rkH
i

k
xxr

xxn
a


 x,xo )() q    (30) 

  with )(q  n ),( 00 yxu inc  

 

 

CCOONNCCLLUUSSIIOONNSS  

 We apply  the method of Muijres for solving the boundary-value problem corresponding 

to diffusion through a two-dimensional medium containing a crack. We consider  two type 

of   crack: (1) compliant crack and (2) rigid crack. Based on the method, we derive the 

integral representation for the temperature field outside the crack. By using the numerical 

techniques to solve unknown expansion coefficient, we are able to consider diffusion 

through media containing a crack.. 
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AAPPPPEENNDDIIXX  

The Green’s function is a solution for the diffusion equation with source point at 

x ),(' oo zx : 

 )())((),',(
1

),',(
2

2 tzzxxtxxu
t

txxu oo 





 ,  (A.1) 

where x = (x,z). 

There are several ways to obtain expression for the Green’s function. One way is by 

performing Fourier transform in space. Let the inverse formula for Fourier transform of the 

Green’s function, uG be denoted by . Then     

 
21

)'(

2
),(

4

1
),',( 


 









ddtetxxu xxiG   (A.2) 

with ),( 21  . Since 

 
212

2)'(

22

2 1

4

11

































 









dd
t

eu
t

u xxiGG    (A.3) 

with 2
2

2
1

2  , and 

 
21

)'()()(  








ddezzxx xxi
oo

 (A.4) 

We finally obtain an equation for  : 

 )(
1 2

2
t

t















 (A.5) 

with a solution 

 )(),(
222 tHet t   (A.6) 

Substituting (A.6) in (A.2) we obtain 

 
21

22)'(

2

2

4

)(
),',( 




 









ddee
tH

txxu txxiG   (A.7) 

in which )(tH  is the Heaviside step function. 

We can evaluate this integral explicitly by completing the square of  exponential argument. 
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Hence the integral may be written as 

 

t

xxi
sdde t

xx
st

221

24

2|'|2)2(

2

)'(
;




 










  (A.8) 

and by an appropriate change of variable this equals 

 t

xx

stt

xx

e
t

dsdsee
2

2

222

2

4

|'|

221
)(4

|'|

























  (A.9) 

Introducing this result into the expression for Gu  we obtain 

 )(
4

),',(

24

2|'|

tH
t

e
txxu

t

xx

G









  (A.10) 

Other form of the Green’s function can be derive from the diffusion equation in frequency 

domain and we obtain (see Morse & Freshbach (1953)) 

 )(
4

),',( 0
)1(

0 rkH
i

xxuG    (A.11) 

where )()1(0 xH  is the Hankel function of first kind, zeroth-order. 
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