Sri Mulyani, Tean Nurazizah, Omay Sumarna, Wiji Wiji, Tuszie Widhiyanti


Mental model plays an important role in giving reasons, describing, explaining, predicting, testing new ideas, and solving problems. Research on the mental model still needs to be done, especially regarding acid-base which is revealed by using Interview About Event (IAE). The purpose of this study was to analyze the students' mental models on the Arrhenius acid-base concept, the concept of Brӧnsted-Lowry acid base, and acid-base strength. The study was conducted on six students of class XII IPA in one high school in Bandung by using interviews that ask students to explain the given phenomenon. The answers of each student are mapped so as to derive their mental model profile. Based on the pattern obtained, there is found misconception experienced by students that all substances having atom H or OH group on chemical formula is Arrhenius acid or base, proton transfer on acid-base reaction Brӧnsted-Lowry occurs from acid to its conjugate base or from base to conjugate acid , The arrow of the reaction both in the perfect ionisation reaction and the partial ionization reaction is the same ie the arrow one (), the solute particles present in the solution in the ionizing agent are only partially ions (in the absence of molecules). Findings are useful for developing learning strategies, textbooks, media and other learning tools by linking the different levels of chemical representation to build meaning so that students' understanding is better. Keywords: acid basa, Interview About Event (IAE), misconception, mental model.


Model mental berperan penting dalam memberikan alasan, menggambarkan, menjelaskan, memprediksi, menguji ide-ide baru, dan memecahkan masalah. Penelitian mengenai model mental masih perlu dilakukan, khususnya mengenai asam-basa yang diungkap dengan menggunakan Interview About Event (IAE). Tujuan dari penelitian ini adalah untuk menganalisis model mental siswa pada konsep asam basa Arrhenius, konsep asam basa Brӧnsted-Lowry, dan kekuatan asam basa. Penelitian dilakukan terhadap enam siswa kelas XII IPA di salah satu SMA di Kota Bandung  dengan  menggunakan wawancara yang meminta siswa untuk menjelaskan fenomena yang diberikan.  Jawaban setiap siswa dipetakan sehingga diperoleh profil model mental mereka. Berdasarkan pola yang diperoleh, ditemukan miskonsepsi yang dialami siswa yaitu semua zat yang memiliki atom H atau gugus OH pada rumus kimianya merupakan asam atau basa Arrhenius, transfer proton pada reaksi asam basa Brӧnsted-Lowry terjadi dari asam ke basa konjugatnya atau dari basa ke asam konjugatnya, tanda panah reaksi baik pada reaksi ionisasi sempurna maupun reaksi ionisasi sebagian adalah sama yaitu tanda panah satu (), partikel zat terlarut yang ada dalam larutan pada zat yang mengalami reaksi ionisasi sebagian hanya ion-ionnya saja (tanpa adanya molekul). Temuan bermanfaat untuk mengembangkan strategi pembelajaran, buku ajar, media dan perangkat pembelajaran lainnya dengan mempertautkan antar level representasi kimia untuk membangun makna sehingga pemahaman siswa menjadi lebih baik.


acid-base; Interview About Event (IAE); mental model; misconception


Abraham, M. R., Williamson, V. M. (1994). A cross-age study of the understanding of five chemistry concepts. Journal of Research in Science Teaching. 31(2), 147-165.

Artdej, R., Ratanaroutai, T., Coll, R. K., & Thongpanchang, T. (2010). Thai Grade 11 students’ alternative conceptions for acid–base chemistry. Research in Science & Technological Education, 28(2), 167-183.

Brown, T. L., Lemay, H. E., Bursten, B. E., Murphy, C. J., & Woodward, P. M. (2012). Chemistry: The central science. Twelfth Edition. Boston: Prentice Hall.

Cartrette, D. P., & Mayo, P. M. (2011). Students' understanding of acids/bases in organic chemistry contexts. Chemistry Education Research and Practice, 12(1), 29-39.

Çetingül, İ. P., & Geban, Ö. (2005). Understanding of acid-base concept by using conceptual change approach. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 29(29).

Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2007). The development of a two-tier multiple-choice diagnostic instrument for evaluating secondary school students’ ability to describe and explain chemical reactions using multiple levels of representation. Chemistry Education Research and Practice, 8(3), 293-307.

Chang, R. (2010). Chemistry. 10th Edition. Boston: McGraw-Hill.

Chittleborough, G. D. (2004). Models and Modelling in Science Education Multiple Representations in Chemical Education (Doctoral dissertation, Thesis Doctor).

Chittleborough, G. D., Treagust, D. F., Mamiala, T. L., & Mocerino, M. (2005). Students’ perceptions of the role of models in the process of science and in the process of learning. Research in Science & Technological Education, 23(2), 195-212.

Chittleborough, G., & Treagust, D. F. (2007). The modelling ability of non-major chemistry students and their understanding of the sub-microscopic level. Chemistry Education Research and Practice, 8(3), 274-292.

Chiu, M. H., Chou, C. C., & Liu, C. J. (2002). Dynamic processes of conceptual change: Analysis of constructing mental models of chemical equilibrium. Journal of research in science teaching, 39(8), 688-712.

Coll, R. K., Taylor, N. (2002). Mental models in chemistry: Senior chemistry students mental models of chemical bonding. Chemistry Education: Research And Practice In Europe Research Report. 3 (2), hlm. 175-184.

Coll, R. K., & Treagust, D. F. (2003a). Investigation of secondary school, undergraduate, and graduate learners' mental models of ionic bonding. Journal of Research in Science Teaching, 40(5), 464-486.

Coll, R. K., & Treagust, D. F. (2003b). Learners' mental models of metallic bonding: A cross‐age study. Science Education, 87(5), 685-707.

Demircioglu, G., Ayas, A., & Demircioglu, H. (2005). Conceptual change achieved through a new teaching program on acids and bases. Chemistry Education Research and Practice, 6(1), 36-51.

Dhinsda, H., & Treagust, D. (2009). Conceptual understanding of Bruneian tertiary students: Chemical bonding and structure. Brunei International Journal of Science and Mathematics Education, 1(1), 33-51.

Furió‐Más, C., Luisa Calatayud, M., Guisasola, J., & Furió‐Gómez, C. (2005). How are the concepts and theories of acid–base reactions presented? Chemistry in textbooks and as presented by teachers. International journal of science education, 27(11), 1337-1358.

Gentner, D. (2002). Psychology of mental models. In N. J. Smelser & P. B. Bates (Eds), International Encyclopedia of the Social and Behavioral Sciences, pp. 9683-9687. Amsterdam: Elsevier Science.

Gilbert, J. K. & Treagust, D. (Eds). (2009). Multiple representation in chemical education. Netherlands: Springer.

Harrison, A. G., & Treagust, D. F. (1996). Secondary students' mental models of atoms and molecules: Implications for teaching chemistry. Science education, 80(5), 509-534.

Hinton, M. E., & Nakhleh, M. B. (1999). Students’ microscopic, macroscopic, and symbolic representations of chemical reactions. The Chemical Educator, 4(5), 158-167.

Jansoon, N., Coll, R. K., & Somsook, E. (2009). Understanding mental models of dilution in Thai students. International Journal of Environmental and Science Education, 4(2), 147-168.

Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of computer assisted learning, 7(2), 75-83.

Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. J. Chem. Educ, 70(9), 701.

Lin, J. W., & Chiu, M. H. (2007). Exploring the characteristics and diverse sources of students’ mental models of acids and bases. International Journal of Science Education, 29(6), 771-803.

Ross, B., & Munby, H. (1991). Concept mapping and misconceptions: a study of high‐school students’ understandings of acids and bases. International journal of science education, 13(1), 11-23.

Schmidt, H. J., & Chemie, F. (1995). Applying the concept of conjugation to the Bronsted theory of acid‐base reactions by senior high school students from Germany. International Journal of Science Education, 17(6), 733-741.

Sheppard, K. (2006). High school students’ understanding of titrations and related acid-base phenomena. Chemistry Education Research and Practice 7: 32–45.

Treagust, D., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353-1368.

Wang, C. Y. (2007). The role of mental-modeling ability, content knowledge, and mental models in general chemistry students' understanding about molecular polarity. Dissertation. University of Missouri-Columbia.

Whitten, K. W., Davis, R. E., Peck, M. L., Stanley, G. G. (2014). Chemistry. 10th. Australia: Brooks/Cole, Cengage Learning.



  • There are currently no refbacks.

Copyright (c) 2019 Jurnal Pengajaran MIPA

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JPMIPA is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Jurnal Pengajaran Matematika dan Ilmu Pengetahuan Alam (JPMIPA) or Journal of Mathematics and Science Teaching 

All rights reserverd. pISSN 1412-0917 eISSN 2443-3616

Copyright © Faculty of Mathematics and Science Education (FPMIPA) Universitas Pendidikan Indonesia (UPI)


View JPMIPA Stats