### PENGEMBANGAN INSTRUMEN TES KEMAMPUAN PEMECAHAN MASALAH MATEMATIS SISWA

Sufyani Prabawanto

#### Abstract

Pemecahan masalah matematis adalah bagian yang tidak terpisahkan dari proses pembelajaran matematika. Kajian ini bertujuan untuk mengembangkan istrumen tes kemampuan pemecahan masalah matematis siswa. Dengan demikian, kajian ini diawali dengan pengungkapan variabel-variabel yang terlibat dalam pemecahan masalah matematis dan selanjutnya pengembangan isntrumen tes untuk mengukur kemampuan pemecahan masalah matematis siswa. Pengembangan istrumen ini didasarkan pada sebuah kerangka kerja yang terdiri dari empat domain, yaitu resources, heuristic, control, dan belief system. Hasil kajian ini adalah: (1) penalaran, pengambilan keputusan, berpikir kritis, dan berpikir kreatif merupakan bagian yang tidak terpisahkan dari pemecahan masalah matematis; (2) pemecahan masalah matemaatis dapat ditinjau berdasarkan strukturnya, berdasarkan banyaknya langkah esensial yang diperlukan untuk mencapai solusi, berdasarkan orientasinya, dan berdasarkan penyajiannya.

Mathematical problem solving is an inseparable part of the process of learning mathematics. This study aims to develop test instruments for students' mathematical problem solving abilities. Thus, this study begins with the disclosure of the variables involved in solving mathematical problems and then developing test instruments to measure students' mathematical problem solving abilities. The development of this instrument is based on a framework consisting of four domains, namely resources, heuristics, control, and belief systems. The results of this study are: (1) reasoning, decision making, critical thinking, and creative thinking are an inseparable part of mathematical problem solving; (2) solving the problem of the congregation can be reviewed based on its structure, based on the number of essential steps needed to reach a solution, based on its orientation, and based on its presentation.

#### Keywords

instrumen tes; pemecahan masalah matematis; test instruments; mathematical problem solving

PDF

#### References

Billstein, R., Libeskind, S., & Lott, J.W (1993). A Problem Solving Approach to mathematics for Elementary School Teachers, Massachusetts: Addison-Wesley Publishing Company.

Buchanan, N. K. (1987), Factors contributing to mathematical problem-solving performance: An explanatory study. Educational Studies in Mathematics, 18(4), 399-415.

Blum, W. & Niss, M. (1991), Applied mathematical problem solving, modelling, aplication, and link to other subjects: state, trans, and issues in mathematics instruction. Educational Studies in Mathematics, 22, 37-68.

Carroll, J. B. (1999). Human cognitive ability. New York: Cambridge .

Coxford, A. F., Fey, J. T., Hirsch, C. R., Schoen, H. L., Burrill, G., Hart, E. W., et al. (1997). Contemporary mathematics in context: A unified approach. Columbus, OH: Glencoe, McGraw-Hill.

Depdiknas (2006). Kurikulum Tingkat Satuan Pendidikan, Jakarta: Depdiknas.

Fai, H. K. (2005). Two teachers’ pedagogies in teaching problem solving in Singapore lower secondary mathematics classrooms. Singapore: Centre for Research in Pedagogy .

Florida Department of Education, (2008). Cognitive Complexity Classification of FCAT Test Items, Florida: Florida Department of Education.

Gilfeather & Regato (1999). Routine & Nonroutine Problem Solving , Indianapolis, IN: Pentathlon Institute.

Halmos, P. R. (1980). The heart of mathematics. American Mathematical Monthly, 87, 519-524.

Hoosen, E. (2001). What Are Mathemathical Problems. Augusta: Augusta State University.

Kantowski, M. G. (1977). Processes involved in mathematical problem solving. Journal for Research in Mathematics Education, 8, 163-180.

Kulm (1984). The classification of problem-solving research variables. In Gerald A. Goldin & C. Edwin McClontock (Eds). Task Variables in Mathematical Problem Solving (pp. 1-22). Philadelphia: The Franklin Institute.

Lappan, G., Fey, J., Friel, S., Fitzgerald, W., & Phillips, E. (1995). The Connected Mathematics Project. Palo Alto, CA: Dale Seymour Publications.

Lesh, R., & Zawojewski, J. (2007). Problem solving and modeling. In F. K. J. Lester (Ed.), Second handbookof research on mathematics teaching and learning (pp. 763-804). Charlotte, NC: Information Age.

Lester, F. K. (1983). Trends and issues in mathematical problem-solving research. InR. Lesh & M. Landau (Eds.), Acquisition of mathematical concepts and processes (pp. 229-261). Orlando, FL: Academic Press.

Mayer, R. E. (2009). Information processing. In T. L. Good (EdA reference handbook (pp. 168–174). Thousand Oaks, CA:Mayer, R. E. (in press). Problem solving. In D. Reisberg (Ed.), Oxford handbook of cognitive psychology. New York: Oxford University Press.

Mayer, R. E., & Wittrock, R. C. (2006). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah, NJ: Erlbaum.

NCTM. (2000). Principles and standards for school mathematics. Reston, VA: Author.

Nunokawa, K (1997) Physical models in mathematical problem solving: a case of a tetrahedron problem. International Journal of Mathematical Education in Science and Technology, Volume 28, Issue 6, 1997, pp. 871 – 872.

Polya, G. (1973). How to solve it (2nd ed.). Princeton, NJ: Princeton University Press.

Polya, G. (1981). Mathematical discovery. New York, NY: John Wiley & Sons, Inc.

OECD (2009). Programme for International Student Assessment, Take the Test: Sample Qoestions from OECD’s PISA Assessments. [Online]. Avaliable at: www.pisa.oesd.org (June 28, 2010) .

Resnick, L. B. (1988). Treating mathematics as an ill-structured discipline. In R. I. Charles & E. A. Silver (Eds.), Research agenda for mathematics education: The teaching and assessing of mathematical problem solving (pp. 32-60). Reston, VA: National Council of Teachers of Mathematics.

Robertson, S. I. (2005). Problem Solving. Philadelphia: Taylor & Francis Group.

Santos-Trigo, M. (2007). Mathematical problem solving: An evolving research and practice domain. ZDM, 39, 523-536.Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press, Inc.

Schraw, Dunkle, and Bendixen (1995). Cognitive-Processes in Well-Defined and Ill-Defined Problem-SolvingApplied Cognitive Psychology, 9(1), 523-538.

Senk, S. L., & Thompson, D. R. (Eds.). (2003). Standards-based school mathematics curricula: What are they? What do students learn? Mahwah, NJ: Lawrence Erlbaum.

Stanic, G. M. A., & Kilpatrick, J. (1988). Historical perspectives on problem solving in mathematics curriculum. In R. I. Charles & E. A. Silver (Eds.), Research agenda for mathematics education: The teaching and assessing of mathematical problem solving (pp. 1-22). Reston, VA: National Council of Teachers of Mathematics.

Thompson, A. G. (1992). Teachers' beliefs and conceptions: A synthesis of the research. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 127-146). New York, NY: Macmillan.

Vondracek, B. & Pittman, S. (2006). Connecting the Data: Problem Solving and Mathematical Reasoning. Washington, DC: Department of Education.

Yee, F. P. (2002). Using Short Open-ended Mathematics Questions to Promote Thinking and Understanding. Singapore: National Institute of Education.

### Refbacks

• There are currently no refbacks.

Indexed by: 